Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ(C) can be reversed by inhibition of late Na(+) current.

  • Samuel Sossalla‎ et al.
  • Basic research in cardiology‎
  • 2011‎

Transgenic (TG) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) δ(C) mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca(2+) handling proteins as well as sarcolemmal Na(+) channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na(+) current (late I(Na)) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late I(Na) inhibitor ranolazine (Ran, 5 μmol/L). Force-frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm²; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm² (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late I(Na) was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδ(C) overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late I(Na). Inhibition of elevated late I(Na) had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδ(C) TG mice. Thus, late I(Na) inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased.


Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity : a proteomic approach.

  • Peter Schott‎ et al.
  • Basic research in cardiology‎
  • 2008‎

Chronic hemodynamic overload on the heart results in pathological myocardial hypertrophy, eventually followed by heart failure. Phosphatase calcineurin is a crucial mediator of this response. Little is known, however, about the role of calcineurin in response to acute alterations in loading conditions of the heart, where it could be mediating beneficial adaptational processes. We therefore analyzed proteome changes following a short-term increase in preload in rabbit myocardium in the absence or presence of the calcineurin inhibitor cyclosporine A. Rabbit right ventricular isolated papillary muscles were cultivated in a muscle chamber system under physiological conditions and remained either completely unloaded or were stretched to a preload of 3 mN/mm(2), while performing isotonic contractions (zero afterload). After 6 h, proteome changes were detected by two-dimensional gel electrophoresis and ESI-MS/MS. We identified 28 proteins that were upregulated by preload compared to the unloaded group (at least 1.75-fold regulation, all P < 0.05). Specifically, mechanical load upregulated a variety of enzymes involved in energy metabolism (i.e., aconitase, pyruvate kinase, fructose bisphosphate aldolase, ATP synthase alpha chain, acetyl-CoA acetyltransferase, NADH ubiquinone oxidoreductase, ubiquinol cytochrome c reductase, hydroxyacyl-CoA dehydrogenase). Cyclosporine A treatment (1 micromol/l) abolished the preload-induced upregulation of these proteins. We demonstrate for the first time that an acute increase in the myocardial preload causes upregulation of metabolic enzymes, thereby increasing the capacity of the myocardium to generate ATP production. This short-term adaptation to enhanced mechanical load appears to critically depend on calcineurin phosphatase activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: