Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Comparative analysis of airborne bacteria and fungi in two salt mines in Poland.

  • Elżbieta Gębarowska‎ et al.
  • Aerobiologia‎
  • 2018‎

The aim of this work was to determine the genera or species composition and the number of colony forming units of airborne bacteria and fungi, respectively, in two salt mines in Poland "Wieliczka" (Lesser Poland) and "Polkowice-Sieroszowice" (Lower Silesia). Both of them are working environments characterized by extreme conditions, and additionally "Wieliczka," officially placed on the UNESCO World Heritage Sites' list, plays a role of tourist attraction. There are also some curative chambers located in this mine. Air samples were taken once in December 2015, between 6:00 a.m. and 9:00 a.m. There were nine measurement points located about 200 m underground in "Wieliczka" and six measurement points located in the working shafts about 400 m underground in "Polkowice-Sieroszowice." The total volume of each air sample was 150 L. Air samples, collected in individual measurement points of both salt mines, were inoculated on two microbiological media: potato dextrose agar and tryptic soy agar using the impact method. We identified 10 and 3 fungal genera in the "Wieliczka" Salt Mine and in "Polkowice-Sieroszowice," respectively. The most common were fungi of the Penicillium genus. In both mines, the Gram-positive bacteria of genus Micrococcus were detected most frequently. Among identified microorganisms, there were neither pathogenic fungi nor bacteria. The most prevalent microorganisms detected in indoor air were Gram-positive cocci, which constituted up to 80% of airborne microflora. Our results showed that microorganisms recorded in the air samples are not a threat to workers, tourists or patients. Neither pathogens nor potentially pathogenic microorganisms, listed as BSL-2, BSL-3 or BSL-4, were detected. The microbes identified during our analysis commonly occur in such environments as the soil, water and air. Some of the detected bacteria are component of natural microflora of human skin and mucous membranes, and they can cause only opportunistic infections in individuals depending on their health condition.


Types of Artemisia pollen season depending on the weather conditions in Wrocław (Poland), 2002-2011.

  • Małgorzata Malkiewicz‎ et al.
  • Aerobiologia‎
  • 2014‎

The aim of the study was to characterise Artemisia pollen season types according to weather conditions in Wrocław (south-western Poland) in the years 2002-2011. Over the period analysed, the start date of the pollen season (determined by the 95 % method) ranged from 10 July 2002 to 28 July 2010. The start date of the pollen season can be determined by using Crop Heat Units (CHUs). During the period 2002-2011, the Artemisia pollen season started after the cumulative value of CHUs had reached 2,000-2,100 °C. The three distinguished types of Artemisia pollen season are best described by the frequency of weather types defined by the type of circulation, mean daily air temperature, and the occurrence of rain. The variation in these factors affected the dynamics of the pollen season. The noteworthy frequency of days with rain and high seasonal sum of precipitation totals as well as the dominance of cyclonic weather from the westerly direction had an impact on the extension of the pollen season. The meteorological factors that directly affect pollen release and transport primarily include air humidity, expressed as vapour pressure (r > 0.3, p < 0.01), temperature(r from 0.2 to 0.4, p < 0.01). The relationships between averaged meteorological data and daily pollen concentration were stronger (r > 0.5, p < 0.01). Based on the correlation analysis, the meteorological variables were selected and regression equations were established using stepwise backward regression analysis.


Adenovirus behavior in air handling unit fiberglass filters.

  • Victor Bandaly‎ et al.
  • Aerobiologia‎
  • 2019‎

Viral aerosols can lead to respiratory viral infections with high infectivity. About 90% of people's time is spent in closed environments. A few studies have pointed out that the ventilation systems in air handling units (AHUs) that treat and transmit a new synthetic clean and conditioned environment can also spread and transport viral particles in buildings. The aim of this work is to study the characterization of adenovirus, a DNA non-enveloped respiratory virus, on the F7 fiberglass filter used in AHUs. In this study, an experimental setup simulating an AHU was used. The SYBR® QPCR, Electrical Low-Pressure Impactor (ELPI™) and Scanning Mobility Particle Sizer (SMPS™) were used to detect, measure and characterize the aerosolized adenovirus solution. The characterization results showed that the nebulized adenovirus could be aerosolized in different forms associated or not with cell debris and proteins. The quantification and level of infectivity of adenovirus demonstrated that viruses passed through filters and remained infectious up- and downstream of the system during the 25 min of aerosolization. This study showed that AHUs should be considered an indoor source of viral contamination.


Analysis of the annual pollen integral in Albuquerque, New Mexico, shows a negative trend with temperatures for Juniper, Cottonwood, Elm, and Mulberry.

  • Claudia M Aprea‎ et al.
  • Aerobiologia‎
  • 2022‎

The goal of this study is to determine if the annual pollen integral (APIn) for the top tree allergens in the City of Albuquerque is correlated with meteorological variables. This analysis would be the first of its kind for this area. We used 17 consecutive years from 2004 to 2020 and data collected by the city of Albuquerque using a Spore Trap (Burkard) volumetric air sampler in a location designed to represent a typical desert environment. The pollen studied include Juniper, Elm, Ash, Cottonwood, and Mulberry. We found a negative linear correlation with early summer temperatures of the previous year and APIn for Elm, Cottonwood, and Mulberry, and early fall temperatures for Juniper. Linear regression models developed for Elm, Cottonwood, and Mulberry used the monthly mean maximum temperature for the month of June of the prior year as the independent variable to yield a R squared statistic (R 2) of 0.88, 0.91 and 0.78, respectively. For Juniper, the average monthly mean minimum temperature for the previous September and October served as the independent variable and yielded the R 2 value of 0.80. We also observed a positive trend for the annual maximum temperature over time and a negative trend for the total APIn. Summers in New Mexico are hot and dry, and they may be getting hotter and drier because of climate change. Our analysis predicts that climate change in this area may lead to reduced allergies if temperatures continue to increase and if precipitation patterns remain the same.


Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution.

  • Małgorzata Puc‎
  • Aerobiologia‎
  • 2011‎

The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004-2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM(10) and SO(2) was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.


Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles.

  • Senlin Lu‎ et al.
  • Aerobiologia‎
  • 2014‎

Being major ornamental street trees, species of Platanus are widely planted in the Shanghai urban area. A great deal of allergenic Platanus pollen is released from the trees and suspended in the atmosphere during its flowering season, ultimately causing allergic respiratory diseases. Few papers have focused on the distribution of this type of pollen and its expression of allergenic proteins. In order to investigate any differences in protein expression in Platanus pollen following exposure to gaseous and particulate pollutants, a special apparatus was designed. Exposure condition (such as temperature, humidity, and exposure time) of Platanus pollen and gaseous pollutants can be simulated using of this apparatus. Fresh Platanus orientalis pollen, pollutant gases (NO2, SO2, NH3), and typical urban ambient particles (vehicle exhaust particles, VEPs) were mixed in this device to examine possible changes that might occur in ambient airborne urban pollen following exposure to such pollutants. Our results showed that the fresh P. orientalis pollen became swollen, and new kinds of particles could be found on the surface of the pollen grains after exposure to the pollutants. The results of SDS-PAGE showed that five protein bands with molecular weights of 17-19, 34, 61, 82, and 144 kDa, respectively, were detected and gray scale of these brands increased after the pollen exposure to gaseous pollutants. The two-dimensional gel electrophoresis analysis demonstrated that a Platanus pollen allergenic protein (Pla a1, with a molecular weight of 18 kDa) increased in abundance following exposure to pollutant gases and VEPs, implying that air pollutants may exacerbate the allergenicity of pollen.


Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics.

  • I Kasprzyk‎ et al.
  • Aerobiologia‎
  • 2014‎

The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000-2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.


Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs.

  • Carmen Alonso‎ et al.
  • Aerobiologia‎
  • 2016‎

Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system "off" and "on." Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system "on," but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.


Fungi in the indoor air of critical hospital areas: a review.

  • Jenyffie A Belizario‎ et al.
  • Aerobiologia‎
  • 2021‎

Invasive fungal infection is an important cause of mortality and morbidity in neonates, especially in low-birthweight neonates. The contribution of fungi in the indoor air to the incidence of mucocutaneous colonization and to the risk of invasive fungal infection in this population is uncertain. This review aimed to identify and to summarize the best available evidence on the fungal contamination in the indoor air of critical hospital areas with an emphasis on pediatric/neonatal ICUs. Publications from 2005 to 2019 were searched in the databases Scientific Electronic Library Online (SciELO), US National Library of Medicine National Institutes of Health Search (PubMed), and Latin American Caribbean Health Sciences (LILACS). Descriptors in Health Sciences (DeCS) were used. Research papers published in Portuguese, English, and Spanish were included. Twenty-nine papers on all continents except Australia were selected. The results showed that the air mycobiota contained several fungal species, notably Aspergillus, Penicillium, Cladosporium, Fusarium, and yeast (Candida) species. The selected papers point out the risks that fungi pose to neonates, who have immature immune system, and describe simultaneous external factors (air humidity, seasonality, air and people flow, use of particulate filters, and health professionals' hand hygiene) that contribute to indoor air contamination with fungi. Improving communication among health professionals is a great concern because this can prevent major health complications in neonates, especially in low-birthweight neonates. The results reinforced the need to monitor environmental fungi more frequently and efficiently in hospitals, especially in neonatal ICUs.


Warm and dry weather accelerates and elongates Cladosporium spore seasons in Poland.

  • Idalia Kasprzyk‎ et al.
  • Aerobiologia‎
  • 2016‎

Temperature is the environmental factor that systematically changes for decades and, as in plants and animals, can significantly affect the growth and development of fungi, including the abundance of their sporulation. During the time of study (2010-2012), a rapid increase in air temperature was observed in Poland, which coincided with the substantial decrease in rainfall. The increase in annual mean temperatures at three monitoring sites of this study was 0.9 °C in Lublin and Rzeszow (east Poland) and 2.0 °C in Poznan (west Poland). Such warming of air masses was comparable to the average global air temperature rise in the period of 1880-2012 accounting for 0.85 °C, as reported by the Intergovernmental Panel on Climate Change. Moreover, there was a substantial decrease in rainfall, ranging from 32.7 % (Poznan) to 43.0 % (Rzeszow). We have demonstrated that under such conditions the mean and median values of total Cladosporium spore counts significantly increased and the spore seasons were greatly accelerated. Moreover, earlier start and later end of the season caused its extension, lasting from over 20 days in Rzeszow to around 60 days in Lublin and Poznan, when the cumulative amount of 5-95 % of spores was considered. The time of reaching the cumulative amount of 50 % of spores was up to 25 days earlier (difference in Poznan between 2010 and 2012). There was also a striking acceleration of the date of the maximal Cladosporium spore concentration per cubic metre of air (26 days for Lublin, 43 for Poznan and 56 for Rzeszow).


Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China.

  • Yanju Li‎ et al.
  • Aerobiologia‎
  • 2020‎

University students' health may be adversely affected by exposure to indoor bacterial contaminants on their campuses. This study aims (1) to quantify culturable bacterial concentrations in three indoor environments at a university, (2) to investigate the influence of meteorological factors and gender, to assess the relationship between indoor and outdoor, and (3) to estimate the bacterial dose for university students in different indoor environments. Airborne bacteria samples were collected in 12 classrooms, in 12 living rooms and four bathrooms in two dormitory buildings, and in a dining hall. The results showed that the microenvironment in the female dormitory had the highest mean bacterial concentration (2847 CFU/m3), whereas the lowest mean bacterial concentration was observed in classrooms (162 CFU/m3). Indoor bacterial concentrations in male dormitories were significantly lower than in female dormitories probably because of crowding and increased ventilation. Outdoor weather conditions were associated with the indoor concentrations with regard to insufficient ventilation and varying outdoor concentration. The occupants' activity level was also more closely related to the indoor bacteria concentration in the residential setting. Students experienced about four times higher dose of airborne bacteria in the dormitories than in the classrooms and dining hall.


Simultaneous monitoring of SARS-CoV-2 and bacterial profiles from the air of hospital environments with COVID-19-affected patients.

  • Maria Rita Perrone‎ et al.
  • Aerobiologia‎
  • 2022‎

The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study.


Assessment of microbiological contamination in the work environments of museums, archives and libraries.

  • Justyna Skóra‎ et al.
  • Aerobiologia‎
  • 2015‎

Museums, archives and libraries have large working environments. The goal of this study was to determine microbial contamination in these work places and estimate the influence of microclimatic parameters and total dust content on microbial contamination. In addition, research included evaluation of ergosterol concentration and fungal bioaerosol particle size distribution. Numbers of micro-organisms in the air and on the surfaces in museums were higher (2.1 × 102-7.0 × 103 cfu/m3 and 1.4 × 102-1.7 × 104 cfu/100 cm2, respectively) than in archives and libraries (3.2 × 102-7.2 × 102 cfu/m3 and 8.4 × 102-8.8 × 102 cfu/100 cm2, respectively). The numbers of micro-organisms detected in the tested museums, archives and libraries did not exceed occupational exposure limits proposed by Polish Committee for the Highest Permissible Concentrations and Intensities of Noxious Agents at the Workplace. The concentrations of respirable and suspended dust in museum storerooms were 2-4 times higher than the WHO-recommended limits. We found a correlation between microclimatic conditions and numbers of micro-organisms in the air in the tested working environments. In addition, a correlation was also found between ergosterol concentration and the number of fungi in the air. Fungi were the dominant micro-organisms in the working environments tested. Particles within the dominant fractions of culturable fungal aerosols sampled from museum storerooms had aerodynamic diameters between 1.1 and 2.1 µm.


Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia).

  • Rafał Ogórek‎ et al.
  • Aerobiologia‎
  • 2018‎

This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.


Community structure of environmental microorganisms associated with COVID-19 affected patients.

  • Weihua Zhang‎ et al.
  • Aerobiologia‎
  • 2021‎

To clarify the characteristics and distribution of hospital environmental microbiome associated with confirmed COVID-19 patients. Environmental samples with varying degrees of contamination which were associated with confirmed COVID-19 patients were collected, including 13 aerosol samples collected near eight patients in different wards, five swabs from one patient's skin and his personal belongings, and two swabs from the surface of positive pressure respiratory protective hood and the face shield from a physician who had close contact with one patient. Metagenomic next-generation sequencing (mNGS) was used to analyze the composition of the microbiome. One of the aerosol samples (near patient 4) was detected positive for COVID-19, and others were all negative. The environmental samples collected in different wards possessed protean compositions and community structures, the dominant genera including Pseudomonas, Corynebacterium, Neisseria, Staphylococcus, Acinetobacter, and Cutibacterium. Top 10 of genera accounted for more than 76.72%. Genera abundance and proportion of human microbes and pathogens radiated outward from the patient, while the percentage of environmental microbes increased. The abundance of the pathogenic microorganism of medical supplies is significantly higher than other surface samples. The microbial compositions of the aerosol collected samples nearby the patients were mostly similar to those from the surfaces of the patient's skin and personal belongings, but the abundance varied greatly. The positive rate of COVID-19 RNA detected from aerosol around patients in general wards was quite low. The ward environment was predominantly inhabited by species closely related to admitted patients. The spread of hospital microorganisms via aerosol was influenced by the patients' activity.


Evaluation of ergosterol content in the air of various environments.

  • Beata Gutarowska‎ et al.
  • Aerobiologia‎
  • 2015‎

The aim of the study was to compare the content of ergosterol in different microorganisms (bacteria, yeasts and moulds) isolated from the air as well as in six species of moulds in their different morphological forms-live mycelium, dead mycelium, and spores. Evaluation of the level of mould contamination of the air in various places using culture method and ergosterol determination was also performed. The analysis of ergosterol was carried out by gas chromatography equipped with flame ionisation detector. For evaluation of the results, analysis of variance and multiple comparison test were used. The quantity of ergosterol in the spores of various species of mould was in the range 1.9-9.4 pg/spore. The presence of yeasts and bacteria in the air does not significantly affect ergosterol concentration, in view of the low content of that sterol in their cells (max. 0.009 pg/cell for bacteria and 0.39 pg/cell for yeast). An ergosterol concentration above 1 ng per m3 can be considered an indicator of excessive mould contamination of indoor air. Based on determination of ergosterol in the air of mouldy rooms the result obtained may be compared with the culture method, due to the 1,000 times higher concentration of ergosterol in the mycelium compared with spores. However, in the analysis of outdoor air, in view of the presence of mould mainly in the form of spores and the degradation of ergosterol by UV radiation, analysis of that compound may indicate a lower level of contamination compared with the culture method.


Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series.

  • Myszkowska Dorota‎
  • Aerobiologia‎
  • 2013‎

The aim of the study was to construct the model forecasting the birch pollen season characteristics in Cracow on the basis of an 18-year data series. The study was performed using the volumetric method (Lanzoni/Burkard trap). The 98/95 % method was used to calculate the pollen season. The Spearman's correlation test was applied to find the relationship between the meteorological parameters and pollen season characteristics. To construct the predictive model, the backward stepwise multiple regression analysis was used including the multi-collinearity of variables. The predictive models best fitted the pollen season start and end, especially models containing two independent variables. The peak concentration value was predicted with the higher prediction error. Also the accuracy of the models predicting the pollen season characteristics in 2009 was higher in comparison with 2010. Both, the multi-variable model and one-variable model for the beginning of the pollen season included air temperature during the last 10 days of February, while the multi-variable model also included humidity at the beginning of April. The models forecasting the end of the pollen season were based on temperature in March-April, while the peak day was predicted using the temperature during the last 10 days of March.


Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential.

  • M López-Miras‎ et al.
  • Aerobiologia‎
  • 2013‎

In this study, we investigated and compared the microbial communities adhering to the obverse and the reverse sides of an oil painting on canvas exhibiting signs of biodeterioration. Samples showing no visible damage were investigated as controls. Air samples were also analysed, in order to investigate the presence of airborne microorganisms suspended in the indoor atmosphere. The diversity of the cultivable microorganisms adhering to the surface was analysed by molecular techniques, such as RAPD analysis and gene sequencing. DGGE fingerprints derived from DNA directly extracted from canvas material in combination with clone libraries and sequencing were used to evaluate the non-cultivable fraction of the microbial communities associated with the material. By using culture-dependent methods, most of the bacterial strains were found to be common airborne, spore-forming microorganisms and belonged to the phyla Actinobacteria and Firmicutes, whereas culture-independent techniques identified sequenced clones affiliated with members of the phyla Actinobacteria and Proteobacteria. The diversity of fungi was shown to be much lower than that observed for bacteria, and only species of Penicillium spp. could be detected by cultivation techniques. The selected strategy revealed a higher microbial diversity on the obverse than on the reverse side of the painting and the near absence of actively growing microorganisms on areas showing no visible damage. Furthermore, enzymatic activity tests revealed that the most widespread activities involved in biodeterioration were esterase and esterase lipase among the isolated bacterial strains, and esterase and N-acetyl-β-glucosaminidase among fungi strains.


Allergenic Asteraceae in air particulate matter: quantitative DNA analysis of mugwort and ragweed.

  • I Müller-Germann‎ et al.
  • Aerobiologia‎
  • 2017‎

Mugwort (Artemisia vulgaris) and ragweed (Ambrosia artemisiifolia) are highly allergenic Asteraceae. They often cause pollen allergies in late summer and fall. While mugwort is native to Europe, ragweed reached Europe as a neophyte from North America about 150 years ago and continued spreading ever since. To understand possible relationships between the spread of ragweed, its abundance in air, and to judge possible health risks for the public, we quantified ragweed DNA in inhalable fine as well as in coarse air particulate matter. Mugwort was chosen for comparison, as it is closely related to ragweed and grows in similar, though mainly not identical, habitats but is native to Germany. The DNA quantification was performed on atmospheric aerosol samples collected over a period of 5 years in central Europe. The DNA concentrations were highest during the characteristic pollination periods but varied greatly between different years. In the inhalable fine particle fraction, ragweed exceeds the mugwort DNA concentration fivefold, while the coarse particle fraction, bearing intact pollen grains, contains more mugwort than ragweed DNA. The higher allergenic potential of ragweed might be linked to the humidity or long-range transport-induced bursting of ragweed pollen into smaller allergenic particles, which may reach the lower airways and cause more intense allergic reactions. Airborne ragweed DNA was detected also outside the local pollination periods, which can be explained by atmospheric long-range transport. Back-trajectory analyses indicate that the air masses containing ragweed DNA during winter had originated in regions with milder climate and large ragweed populations (Southern France, Carpathian Basin).


Seasonal variation and size distribution in the airborne indoor microbial concentration of residential houses in Delhi and its impact on health.

  • Pradeep Kumar‎ et al.
  • Aerobiologia‎
  • 2021‎

Exposure of microbial agents in the air of indoor dwellings is associated with effects on respiratory and general health. The current study was conducted in the urban area of Delhi Metropolis for the seasonal quantitative assessment of viable microbial indoor air quality. Bioaerosol measurement was conducted by using Anderson six stage impactor with cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 µm) throughout the all the seasons (April 2019 to March 2020). Meteorological parameters such as temperature and relative humidity were measured to check their effect on microbial survival. Air quality index data of the sampling area were recorded by DPCC air quality monitoring system, Ashok Vihar, Delhi. The highest (1654 ± 876.87 CFU/m3) and lowest (738 ± 443.59 CFU/m3) mean bacterial concentration in houses was recorded in August and December, respectively. Similarly, the highest fungal concentration (1275 ± 645.22 CFU/m3) was found in August and the lowest in (776 ± 462.46 CFU/m3) in January. Bacterial respirable fraction shows an irregular pattern in different seasons. In the case of fungi, the respirable fraction of 2.1 and 1.1 contributes more than 60% of total culturable bioaerosols in all seasons. Bacterial genera including Staphylococcus, Micrococcus, and Streptobacillus were most dominant, and Cladosporium, Aspergillus, Penicillium, and Alternaria were the most dominant fungal genera observed indoors. The results of this study suggest that higher respirable fungal fraction might penetrate deeper into the lungs and cause various health effects. A higher concentration of bioaerosols in outdoor areas than indoor shows that the source of indoor bioaerosols is outdoor air.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: