Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Myristic Acid Derived Sophorolipid: Efficient Synthesis and Enhanced Antibacterial Activity.

  • Isha Abhyankar‎ et al.
  • ACS omega‎
  • 2021‎

Microbial glycolipids are one of the most interesting alternatives to chemical-based surfactants as they exhibit improved biodegradability and less toxicity. However, their potential has been limited because of specificity of the yeast toward fatty acids having a carbon 16 or carbon 18 chain. This study focuses on sophorolipid (SL) production by the yeast Starmerella bombicola using myristic acid, a medium-chain carbon-14 fatty acid that has not been used as a substrate for SL production. The production was optimized for inoculum size and lipophilic substrate concentration. Furthermore, we also studied the effect of medium-chain fatty acid on yeast cell growth and optimized the process for excellent yield. The myristic acid SL (MASL) so synthesized consisted of mono- and diacetylated forms with preferential glycosylation at the methyl end group, as determined by high-resolution mass spectrometry. Individual congeners of the crude mixture were separated using dry column chromatography and then structurally characterized by mass spectrometry. The synthesized MASL was also shown to have promising surface tension, lowering abilities with a low CMC of 14 mg/L. The SL derived from myristic acid exhibited superior antibacterial activity as compared to SL derived from oleic acid. MASL was also found to be more potent against Gram-positive organisms as compared to Gram-negative organisms. This work, therefore, demonstrates successful synthesis of myristic acid-derived SL and its superior antibacterial activity, establishing a promising future for this biosurfactant.


Decarboxylation of Fatty Acids with Triruthenium Dodecacarbonyl: Influence of the Compound Structure and Analysis of the Product Mixtures.

  • Gerhard Knothe‎ et al.
  • ACS omega‎
  • 2017‎

Recently, the decarboxylation of oleic acid (9(Z)-octadecenoic acid) catalyzed by triruthenium dodecacarbonyl, Ru3(CO)12, to give a mixture of heptadecenes with concomitant formation of other hydrocarbons, heptadecane and C17 alkylbenzenes, was reported. The product mixture, consisting of about 77% heptadecene isomers, 18% heptadecane, and slightly >4% C17 alkylbenzenes, possesses acceptable diesel fuel properties. This reaction is now applied to other fatty acids of varying chain length and degree of saturation as well as double-bond configuration and position. Acids beyond oleic acid included in the present study are lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), petroselinic (6(Z)-octadecenoic), elaidic (9(E)-octadecenoic), asclepic (11(Z)-octadecenoic), and linoleic (9(Z),12(Z)-octadecadienoic) acids. Regardless of the chain length and degree of unsaturation, a similar product mixture was obtained in all cases with a mixture of alkenes predominating. Monounsaturated fatty acids, however, afforded the alkane with one carbon less than the parent fatty acid as the most prominent component in the mixture. Alkylbenzenes with one carbon atom less than the parent fatty acid were also present in all product mixtures. The number of isomeric alkenes and alkylbenzenes depends on the number of carbons in the chain of the parent fatty acid. With linoleic acid as the starting material, the amount of alkane was reduced significantly with alkenes and alkylaromatics enhanced compared to the monounsaturated fatty acids. Two alkenes, 9(E)-tetradecene and 1-hexadecene, were also studied as starting materials. A similar product mixture was observed but with comparatively minor amount of alkane formed and alkene isomers dominating at almost 90%. The double-bond position and configuration in the starting material do not influence the pattern of alkene isomers in the product mixture. The results underscore the multifunctionality of the Ru3(CO)12 catalyst, which promotes a reaction sequence including decarboxylation, isomerization, desaturation, hydrogenation, and cyclization (aromatization) to give a mixture of hydrocarbons simulating petrodiesel fuels. A reaction pathway is proposed to explain the existence of these products, in which alkenes are dehydrogenated to alkadienes and then, under cyclization, to the observed alkylaromatics. The liberated hydrogen can then saturate alkenes to the corresponding alkane.


Preparation of Polymeric Films of PVDMA-PEI Functionalized with Fatty Acids for Studying the Adherence and Proliferation of Langerhans β-Cells.

  • Martha E Ávila-Cossío‎ et al.
  • ACS omega‎
  • 2020‎

This study reports the synthesis of thin polymeric films by the layer-by-layer deposition and covalent cross-linking of polyvinyl dimethylazlactone and polyethylene imine, which were functionalized with lauric (12-C), myristic (14-C), and palmitic (16-C) saturated fatty acids, whose high levels in the bloodstream are correlated with insulin resistance and the potential development of type 2 diabetes mellitus. Aiming to assess the effect of the fatty acids on the adhesion and proliferation of Langerhans β-cells, all prepared films (35 and 35.5 bilayers with and without functionalization with the fatty acids) were characterized in terms of their physical, chemical, and biological properties by a battery of experimental techniques including 1H and 13C NMR, mass spectrometry, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, cell staining, and confocal laser scanning microscopy among others. In general, the developed films were found to be nanometric, transparent, resistant against manipulation, chemically reactive, and highly cytocompatible. On the other hand, in what the effect of the fatty acids is concerned, palmitic acid was found to impair the proliferation of the cultured β-cells, contrary to its homologues which did not alter this biological process. In our opinion, the multidisciplinary study presented here might be of interest for the research community working on the development of cytocompatible 2D model substrates for the safe and reproducible characterization of cell responses.


Evolution of Photoluminescent CdS Magic-Size Clusters Assisted by Adding Small Molecules with Carboxylic Group.

  • Zhengtian He‎ et al.
  • ACS omega‎
  • 2021‎

We report our investigation on the formation of photoluminescent CdS magic-size clusters (MSCs), which exhibit absorption peaking at 373 nm, along with sharp band edge emission at ∼385 nm. Denoted as MSC-373, the MSCs were synthesized from the reaction of cadmium oleate (Cd(OA)2) and S powder in 1-octadecene at room temperature, together with the addition of acetic acid (HOAc) or acetate salts (M(OAc)2, M = Zn and Mn) during the prenucleation stage (120 °C). The morphology of as-synthesized MSC-373 was dot-like, which could be altered to flake-like morphology after purification. We found the formation of MSC-373 was related to the ligand exchange, resulting from the addition of small molecules with carboxylic group. The addition of HOAc not only promotes the formation of CdS MSC-373 but suppresses the formation of MSC-311 and nucleation and growth of quantum dots (QDs). When the amount of HOAc addition was increased, another photoluminescent CdS MSCs, namely, MSC-406, evolved. This study provides an overall understanding of the CdS MSC-373 and introduces a new approach to synthesize photoluminescent CdS MSCs.


Efficient Charge Extraction from CdSe/ZnSe Dots-on-Plates Nanoheterostructures.

  • Sushma Yadav‎ et al.
  • ACS omega‎
  • 2017‎

An efficient and a selective charge extraction from a new type of heterostructured material is demonstrated: the quasi-type-II structure formed upon deposition of ZnSe quantum dots on CdSe nanoplatelets, termed as CdSe/ZnSe dots-on-plates (DoPs) heterostructures. Insights into the charge extraction mechanism are gained from the present studies. Quenching experiments on nanoplatelets (NPLs) and DoPs using electron (benzoquinone) and hole (pyridine) quenchers show the possibility of electron extraction leaving behind the hole in the nanostructures. These outcomes indicate more labile electron extraction in comparison with the hole from these DoP structures vis-à-vis the plate only nanostructures, thereby enabling materials for devices requiring only one type of charges. In CdSe NPLs, the excitons are short-lived making them difficult for various applications involving charge separation. The CdSe/ZnSe DoPs could be alternate candidates for overcoming the difficulties involved with NPLs.


Thermodynamic Model for Quantum Dot Assemblies Formed Because of Charge Transfer.

  • Rekha Mahadevu‎ et al.
  • ACS omega‎
  • 2018‎

Two initially neutral semiconductor quantum dots with appropriate band offsets can participate in a ground state charge transfer process. The charge transfer manifests itself in the form of bleaching of optical transitions and also causes the quantum dots to precipitate from solution, giving rise to assemblies with unusual properties. As this represents a postsynthetic modification of the electronic structure of quantum dots, it holds tremendous potential for improving the characteristics of quantum dot devices. Here, we study the dependencies of the properties of these assemblies on the structure of the participating quantum dots. In particular, we find that for assemblies formed out of Cu:CdS and ZnTe/CdS quantum dots, the composition of the assembly varies from 1:1.26 to 1:0.23 ZnTe/CdS to Cu:CdS as the shell thickness of CdS in ZnTe/CdS is increased. In contrast, the composition changes from 1:1.1 to 1:15 for PbSe/CdSe and Cu:CdS quantum dots, as the size of the PbSe core is increased. These observations are explained on the basis of a phenomenological thermodynamic model. The applicability of thermodynamics to this example of self-assembly is verified empirically.


Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation.

  • Hongmin Seo‎ et al.
  • ACS omega‎
  • 2021‎

The development of efficient water-oxidizing electrocatalysts is a key issue for achieving high performance in the overall water electrolysis technique. However, the complexity of multiple electron transfer processes and large activation energies have been regarded as major bottlenecks for efficient water electrolysis. Thus, complete electrochemical processes, including electron transport, charge accumulation, and chemical bond formation/dissociation, need to be analyzed for establishing a design rule for film-type electrocatalysts. In light of this, complex capacitance analysis is an effective tool for investigating the charge accumulation and dissipation processes of film-type electrocatalysts. Here, we conduct complex capacitance analysis for the Mn3O4 nanocatalyst, which exhibits superb catalytic activity for water oxidation under neutral conditions. Charge was accumulated on the catalyst surface by the change in Mn valence between Mn(II) and Mn(IV) prior to the rate-determining O-O bond forming step. Furthermore, we newly propose the dissipation ratio (D) for understanding the energy balance between charge accumulation and charge consumption for chemical O-O bond formation. From this analysis, we reveal the potential- and thickness-dependent contribution of the charge accumulation process on the overall catalytic efficiency. We think that an understanding of complex capacitance analysis could be an effective methodology for investigating the charge accumulation process on the surface of general film-type electrocatalysts.


Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination.

  • Diana Fabiola Garcia-Gutierrez‎ et al.
  • ACS omega‎
  • 2018‎

Lead sulfide (PbS) nanoparticles were synthesized by chemical methods with different sizes and different capping ligands (oleic acid, myristic acid, and hexanoic acid), avoiding ligand exchange procedures, to study the effect of characteristics of the capping ligands on their energy levels and band gap values. Experimental results (UV-vis-NIR, Fourier transform infrared, and Raman spectroscopies, cyclic voltammetry, transmission electron microscopy, and electron energy loss spectroscopy) showed a marked influence of the capping ligand nature on the electro-optical properties of PbS nanoparticles with a very similar size. Differences were observed in the atomistic arrangement on the nanoparticle surface and phonon vibrations with the different capping ligands. These observations suggest that the electro-optical properties of PbS nanoparticles are not only determined by their size, through quantum confinement effects, but also strongly affected by the atomistic arrangement on the nanoparticle surface, which is determined by the capping ligand nature.


Design of l-Lysine-Based Organogelators and Their Applications in Drug Release Processes.

  • Seref Kaplan‎ et al.
  • ACS omega‎
  • 2019‎

This work reports on the synthesis of three new l-lysine-based organogelators bis(N2-alkanoyl-N6-l-lysyl ethylester)oxalylamides, where alkanoyls are lauroyl, myristoyl, and palmitoyl. The gels of these gelators were prepared with high yields in eco-friendly solvents commonly used in cosmetics such as ethyl and isopropyl esters of lauric and myristic acids, liquid paraffin, 1-decanol, and 1,2-propanediol. Fourier transform infrared measurements revealed the involvement of intermolecular hydrogen bonds in the gelation. Scanning electron microscopy images of xerogels indicated different morphologic patterns with regard to the alkanoyl chain length and the solvent employed in their preparation. The gel formation was supported by rheological measurements. Three gels prepared in liquid paraffin were loaded with naproxen (Npx) with a quite high loading capacity (up to 166.6% as percentage of gelator) without gel disruption. The release of Npx from the gel matrix into the buffered solution at physiologic pH was evaluated using UV-vis spectroscopy. The results revealed that the release rate of Npx from the organogels significantly retarded with increasing organogelator concentration, whereas it enhanced with increasing Npx concentration. The rate was also found to be pH-dependent; the lower the pH, the lower the rate. Furthermore, molecular dynamic calculations performed on the octamer of myristoyl-bearing gelator (N 2 M/N 6 Lys) in 1,2-propanediol provided useful information regarding the structural properties of the gels, which may be of interest to interpret the structure of the gel matrix. Altogether, this work provided valuable outcomes, which may be relevant to the pharmaceutical industry. It may be suggested that l-lysine-based gels have potentials in the delivery of nonsteroidal anti-inflammatory drug molecules. Besides, the release of the drug can be fine-tuned by the correct choice of gelator-solvent combination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: