Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Large scale isolation and purification of soluble RAGE from lung tissue.

  • Judson M Englert‎ et al.
  • Protein expression and purification‎
  • 2008‎

The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.


Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging.

  • Henrik Karring‎ et al.
  • Experimental eye research‎
  • 2010‎

Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging. TGFBIp in corneas from individuals ranging from six months to 86 years of age was detected and quantified by immunoblotting. The level of TGFBIp in the cornea increases about 30% between 6 and 14 years of age, and adult corneas contain 0.7-0.8 microg TGFBIp per mg wet tissue. Two-dimensional (2-D) immunoblots of the corneal extracts showed a characteristic "zig-zag" pattern formed by different lower-molecular mass TGFBIp isoforms (30-60 kDa). However, the relative abundance of the different isoforms was different between infant corneas (<1 year) and the child/adult corneas (>6 years). Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) data of TGFBIp isoforms separated on large 2-D gels show that TGFBIp is proteolytically processed from the N-terminus. This observation was supported by in silico 2-D gel electrophoresis showing that sequential proteolytical trimming events from the N-terminus of mature TGFBIp generate TGFBIp isoforms which form a similar "zig-zag" pattern when separated by 2-D polyacrylamide gel electrophoresis (PAGE). This study shows that in humans TGFBIp is more abundant in mature corneas than in the developing cornea and that the processing of TGFBIp changes during postnatal development of the cornea. In addition, TGFBIp appears to be degraded in a highly orchestrated manner in the normal human cornea with the resulting C-terminal fragments being retained in the cornea. The age-related changes in the expression and processing of corneal TGFBIp suggests that TGFBIp may play a role in the postnatal development and maturation of the cornea. Furthermore, these observations may be relevant to the age at which mutant TGFBIp deposits in the cornea in those dystrophies caused by mutations in the transforming growth factor beta induced gene (TGFBI) as well as the mechanisms of corneal protein deposition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: