Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 181 papers

Dual-pH responsive micelle platform for co-delivery of axitinib and doxorubicin.

  • Xiuli Xu‎ et al.
  • International journal of pharmaceutics‎
  • 2016‎

While the complicated pathogenesis of cancer results in limited therapeutic efficacy of current mono-drug treatment, combination therapy by multiple drugs is becoming increasingly attractive due to the decreased side effects and synergistic anti-cancer activities. The recently emerging modality is the co-delivery of traditional chemotherapeutics and anti-angiogenesis agents. Although nanocarriers are frequently utilized for the co-delivery of different drugs, there are still concerns regarding their implementations. Most of the nanocarriers cannot release drugs separately into their different targeted sites of action. Therefore, we have developed a micellar platform for the co-delivery of an antiangiogenesis agent, axitinib (AXI) and a DNA intercalator, doxorubicin (DOX). Our results showed that this cross-linked micelle (DA-CM) could release AXI and DOX in tumor extracellular environment and intracellular lysosome compartments, respectively, in response to the dual pH stimulus. Notably, DA-CM exhibited remarkably improved tumor accumulation, cell internalization, tumor spheroids penetration and cytotoxicity. Ultimately, DA-CM reduced the number of immature vessels within xenograft tumors, demonstrating an effective antiangiogenesis effect. Meanwhile, they inhibited tumor growth by 88%. Our co-delivery micellar system with the dual-pH responsive feature might hold great promises for the combinatory cancer therapy.


Genetic testing of 248 Chinese aortopathy patients using a panel assay.

  • Hang Yang‎ et al.
  • Scientific reports‎
  • 2016‎

Inherited aortopathy, which is characterized by a high risk of fatal aortic aneurysms/dissections, can occur secondarily to several syndromes. To identify genetic mutations and help make a precise diagnosis, we designed a gene panel containing 15 genes responsible for inherited aortopathy and tested 248 probands with aortic disease or Marfan syndrome. The results showed that 92 individuals (37.1%) tested positive for a (likely) pathogenic mutation, most of which were FBN1 mutations. We found that patients with a FBN1 truncating or splicing mutation were more prone to developing severe aortic disease or valvular disease. To date, this is the largest reported cohort of Chinese patients with aortic disease who have undergone genetic testing. Therefore, it can serve as a considerable dataset of next generation sequencing data analysis of Chinese population with inherited aortopathy. Additionally, according to the accumulated data, we optimized the analysis pipeline by adding quality control steps and lowering the false positive rate.


HMGB1 Induces Secretion of Matrix Vesicles by Macrophages to Enhance Ectopic Mineralization.

  • Qiang Chen‎ et al.
  • PloS one‎
  • 2016‎

Numerous clinical conditions have been linked to ectopic mineralization (EM). This process of pathological biomineralization is complex and not fully elucidated, but thought to be started within matrix vesicles (MVs). We hypothesized that high mobility group box 1 (HMGB1), a cytokine associated with biomineralizing process under physiological and pathological conditions, induces EM via promoting MVs secretion from macrophages. In this study, we found that HMGB1 significantly promoted secretion of MVs from macrophages and subsequently led to mineral deposition in elevated Ca/Pi medium in vitro. Transmission electron microscopy of calcifying MVs showed formation of hydroxyapatite crystals in the vesicle interior. Subcutaneous injection into mice with MVs derived from HMGB1-treated cells showed a greater potential to initiate regional mineralization. Mechanistic experiments revealed that HMGB1 activated neutral sphingomyelinase2 (nSMase2) that involved the receptor for advanced glycation end products (RAGE) and p38 MAPK (upstream of nSMase2). Inhibition of nSMase2 with GW4869 or p38 MAPK with SB-239063 prevented MVs secretion and mineral deposition. Collectively, HMGB1 induces MVs secretion from macrophages at least in part, via the RAGE/p38 MAPK/nSMase2 signaling pathway. Our findings thus reveal a novel mechanism by which HMGB1 induces ectopic mineralization.


Genetic variations in GJA3, GJA8, LIM2, and age-related cataract in the Chinese population: a mutation screening study.

  • Zhou Zhou‎ et al.
  • Molecular vision‎
  • 2011‎

To investigate the role of genetic variations in three known cataract-associated genes, gap junction protein α3 (GJA3), gap junction protein α8 (GJA8), lens intrinsic membrane protein 2 (LIM2), encoding lens fiber cell membrane proteins in the development of age-related cataracts.


Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes.

  • Jiqian Xu‎ et al.
  • PloS one‎
  • 2015‎

Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.


Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode.

  • Naoufal Lakhssassi‎ et al.
  • Scientific reports‎
  • 2019‎

In soybeans, eighteen members constitute the serine hydroxymethyltransferase (GmSHMT) gene family, of which the cytosolic-targeted GmSHMT08c member has been reported to mediate resistance to soybean cyst nematode (SCN). This work presents a comprehensive study of the SHMT gene family members, including synteny, phylogeny, subcellular localizations, haplotypes, protein homology modeling, mutational, and expression analyses. Phylogenetic analysis showed that SHMT genes are divided into four classes reflecting their subcellular distribution (cytosol, nucleus, mitochondrion, and chloroplast). Subcellular localization of selected GmSHMT members supports their in-silico predictions and phylogenetic distribution. Expression and functional analyses showed that GmSHMT genes display many overlapping, but some divergent responses during SCN infection. Furthermore, mutational analysis reveals that all isolated EMS mutants that lose their resistance to SCN carry missense and nonsense mutations at the GmSHMT08c, but none of the Gmshmt08c mutants carried mutations in the other GmSHMT genes. Haplotype clustering analysis using the whole genome resequencing data from a collection of 106 diverse soybean germplams (15X) was performed to identify allelic variants and haplotypes within the GmSHMT gene family. Interestingly, only the cytosolic-localized GmSHMT08c presented SNP clusters that were associated with SCN resistance, supporting our mutational analysis. Although eight GmSHMT members respond to the nematode infestation, functional and mutational analysis has shown the absence of functional redundancy in resistance to SCN. Structural analysis and protein homology modeling showed the presence of spontaneous mutations at important residues within the GmSHMT proteins, suggesting the presence of altered enzyme activities based on substrate affinities. Due to the accumulation of mutations during the evolution of the soybean genome, the other GmSHMT members have undergone neofunctionalization and subfunctionalization events.


Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu.

  • Fen Xu‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Human adipose-derived stem cells (hADSCs) are an important source of cells for regenerative medicine. Evidence of extensive interactions with the surrounding microenvironment has led researchers to focus more on hADSCs as activating agents of regenerative pathways, rather than simply replacing damaged cells. Several studies have found that functional miRNAs can be packaged into exosomes and transferred from donor cells into recipient cells, indicating that transported miRNAs may be a new class of cell-to-cell regulatory species. The aim of the present study was to evaluate whether the exosome-derived miRNAs secreted by hADSCs are capable of influencing angiogenesis, a key step in tissue regeneration.


The Suppression of Medium Acidosis Improves the Maintenance and Differentiation of Human Pluripotent Stem Cells at High Density in Defined Cell Culture Medium.

  • Weiwei Liu‎ et al.
  • International journal of biological sciences‎
  • 2018‎

Cell density has profound impacts on the cell culture practices of human pluripotent stem cells. The regulation of cell growth, cell death, pluripotency and differentiation converge at high density, but it is largely unknown how different regulatory mechanisms act at this stage. We use a chemically defined medium to systemically examine cellular activities and the impact of medium components in high-density culture. We show that medium acidosis is the main factor that alters cell cycle, gene expression and cellular metabolism at high cell density. The low medium pH leads to inhibition of glucose consumption, cell cycle arrest, and subsequent cell death. At high cell density, the suppression of medium acidosis with sodium bicarbonate (NaHCO3) significantly increases culture capacity for stem cell survival, derivation, maintenance and differentiation. Our study provides a simple and effective tool to improve stem cell maintenance and applications.


Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro.

  • Pan Guo‎ et al.
  • Toxicological sciences : an official journal of the Society of Toxicology‎
  • 2014‎

Melatonin is an indolamine synthesized in the pineal gland that has a wide range of physiological functions, and it has been under clinical investigation for expanded applications. Increasing evidence demonstrates that melatonin can ameliorate cadmium-induced hepatotoxicity. However, the potentially protective effects of melatonin against cadmium-induced hepatotoxicity and the underlying mechanisms of this protection remain unclear. This study investigates the protective effects of melatonin pretreatment on cadmium-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content. Consistent with this finding, Cd exposure was associated with decreased Sirtuin 1 (SIRT1) protein expression and activity, thus promoted acetylation of PGC-1 alpha, a key enzyme involved in mitochondrial biogenesis and function, although Cd did not disrupt the interaction between SIRT1 and PGC-1 alpha. However, all cadmium-induced mitochondrial oxidative injuries were efficiently attenuated by melatonin pretreatment. Moreover, Sirtinol and SIRT1 siRNA each blocked the melatonin-mediated elevation in mitochondrial function by inhibiting SIRT1/ PGC-1 alpha signaling. Luzindole, a melatonin receptor antagonist, was found to partially block the ability of melatonin to promote SIRT1/ PGC-1 alpha signaling. In summary, our results indicate that SIRT1 plays an essential role in the ability of moderate melatonin to stimulate PGC-1 alpha and improve mitochondrial biogenesis and function at least partially through melatonin receptors in cadmium-induced hepatotoxicity.


Influence of Physiological Gastrointestinal Surfactant Ratio on the Equilibrium Solubility of BCS Class II Drugs Investigated Using a Four Component Mixture Design.

  • Zhou Zhou‎ et al.
  • Molecular pharmaceutics‎
  • 2017‎

The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug-micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior.


Accelerated parallel algorithm for gene network reverse engineering.

  • Jing He‎ et al.
  • BMC systems biology‎
  • 2017‎

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) represents one of the most effective tools to reconstruct gene regulatory networks from large-scale molecular profile datasets. However, previous implementations require intensive computing resources and, in some cases, restrict the number of samples that can be used. These issues can be addressed elegantly in a GPU computing framework, where repeated mathematical computation can be done efficiently, but requires extensive redesign to apply parallel computing techniques to the original serial algorithm, involving detailed optimization efforts based on a deep understanding of both hardware and software architecture.


Correlation of CD44v6 expression with ovarian cancer progression and recurrence.

  • Jun Shi‎ et al.
  • BMC cancer‎
  • 2013‎

Previously some groups demonstrated that CD44 variant 6 (CD44v6) is correlated with progression and metastasis of ovarian cancer. However, a number of other groups failed to find such an association. Moreover, epithelial ovarian cancer is known to easily metastasize to distinct sites such as the pelvic and abdominal cavities, but the potential association of CD44v6 expression with site-specific metastasis of ovarian cancer has not been explored. This study sought to evaluate the expression of CD44 standard (CD44s) and CD44v6 in primary, metastatic and recurrent epithelial ovarian cancer to explore the potential association of CD44s and CD44v6 with tumor progression and recurrence.


Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF.

  • Qian Chen‎ et al.
  • Neurochemistry international‎
  • 2012‎

Tau protein, a microtubule-associated protein involved in a number of neurological disorders such as Alzheimer's disease (AD), may undergo modifications under both physiological and pathological conditions. However, the signaling pathways that couple tau protein to neuronal physiology such as synaptic plasticity have not yet been elucidated. Here we report that tau protein is involved in morphological plasticity in response to brain derived neurotrophic factor (BDNF). Stimulation of the cultured rat hippocampal neurons with BDNF resulted in increased tau protein expression, as detected by Western blotting. Furthermore, tau protein accumulated in the distal region of the neurite when treated with taxol or taxol plus BDNF. The increased tau protein also protected neurons against nocodazole-induced dendrite loss. Moreover, BDNF promoted spine growth as well as tau protein over-expression. Knockdown of tau protein using specific short-hairpin RNA (shRNA) significantly decreased the spine density. And BDNF could not increase the spine density of tau-knockdown neurons. These results highlight a possible role for tau protein in the dynamic rearrangement of cytoskeletal fibers vital for BDNF-induced synaptic plasticity.


Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes.

  • Rongchuan Yue‎ et al.
  • PloS one‎
  • 2012‎

Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed.


A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree.

  • Shanshan Hu‎ et al.
  • Molecular vision‎
  • 2010‎

To identify the underlying genetic defect in a four-generation family of Chinese origin with autosomal dominant congenital cataract-microcornea syndrome (CCMC).


Mortalin overexpression attenuates beta-amyloid-induced neurotoxicity in SH-SY5Y cells.

  • Mingyue Qu‎ et al.
  • Brain research‎
  • 2011‎

Amyloid-beta peptide (Aβ) is shown to be toxic to the mitochondria and implicates this organelle in the pathogenesis of Alzheimer's disease. Previous studies suggest that targeting mitochondria for protection may be a useful strategy to reduce Aβ-induced neurotoxicity. Mortalin is the mitochondrial located member of the heat shock protein 70 family, which serves as a major mitochondrial molecular chaperone and plays a key role in mitochondrial import of proteins. Several studies have demonstrated the protective potential of Hsp75 overexpression against apoptosis induced by various forms of stresses. To investigate whether mortalin overexpression could provide protective effects on Aβ toxicity, SH-SY5Y cells were used to transfect human mortalin gene and then treated with Aβ(1-42) for 24h. It is found that overexpression of mortalin efficiently attenuated Aβ(1-42)-induced cell viability damage and apoptosis. Additionally, inhibition of mortalin expression by mortalin-specific siRNA oligonucleotides sensitized SH-SY5Y cells to Aβ(1-42)-induced neurotoxicity. Furthermore, mortalin overexpression significantly inhibited the Aβ(1-42)-induced depolarization of mitochondrial membrane potential, reversed the Aβ(1-42)-induced reduction in cytochrome c oxidase activity and ATP generation, and suppressed the Aβ(1-42)-induced reactive oxygen species accumulation and lipid peroxidation. Together, our results suggest that mortalin can afford protection against Aβ(1-42)-induced neurotoxicity in SH-SY5Y cells. These beneficial effects of mortalin overexpression may be attributable to its roles in maintaining mitochondrial function and reducing oxidative stress.


A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport.

  • Daniel S Terry‎ et al.
  • Nature communications‎
  • 2018‎

Neurotransmitter:sodium symporters (NSS), targets of antidepressants and psychostimulants, clear neurotransmitters from the synaptic cleft through sodium (Na+)-coupled transport. Substrate and Na+ are thought to be transported from the extracellular to intracellular space through an alternating access mechanism by coordinated conformational rearrangements in the symporter that alternately expose the binding sites to each side of the membrane. However, the mechanism by which the binding of ligands coordinates conformational changes occurring on opposite sides of the membrane is not well understood. Here, we report the use of single-molecule fluorescence resonance energy transfer (smFRET) techniques to image transitions between distinct conformational states on both the extracellular and intracellular sides of the prokaryotic NSS LeuT, including partially open intermediates associated with transport activity. The nature and functional context of these hitherto unidentified intermediate states shed new light on the allosteric mechanism that couples substrate and Na+ symport by the NSS family through conformational dynamics.


Bradykinin potentially stimulates cell proliferation in rabbit corneal endothelial cells through the ZO‑1/ZONAB pathway.

  • Lixian He‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Bradykinin (BK) has been demonstrated to induce proliferation in several types of cell in ex vivo corneas. However, the mechanisms underlying the action of BK on corneal endothelial cells (CECs) remain largely unknown. The present study aimed to investigate the effect of BK on rabbit corneal endothelial cell (RCEC) proliferation, and assess the involvement of the zonula occludens‑1(ZO‑1)/ZO‑1associated nucleic acid binding protein (ZONAB) pathway. Cell proliferation and cell cycle distribution was analyzed following treatment with BK (0.01, 0.1,1.0 or 10.0 µM) for the indicated time intervals (24, 48, 72 and 96 h), or following BK treatment combined with transfection of ZONAB‑small interfering (si)RNA for 72 h. In addition, the expression of tight junction ZO‑1, nuclear ZONAB, proliferating cell nuclear antigen(PCNA) and cyclin D1 were evaluated using western blotting or immunofluorescence. BK treatment was demonstrated to induce time‑ and concentration‑dependent cell proliferation and cell cycle progression, along with the upregulation of tight junction ZO‑1 and nuclear ZONAB, as well as PCNA and cyclin D1 protein expression. Furthermore, knockdown with ZONAB‑siRNA inhibited cell proliferation, induced cell cycle arrest and downregulated PCNA and cyclin D1 protein expression. ZONAB knockdown therefore successfully reversed the increase in proliferation induced by BK treatment. Taken together, these results suggested that BK stimulated RCEC proliferation, potentially via the ZO‑1/ZONAB pathway. The signaling paradigm disclosed in the present study potentially serves as an important therapeutic target for cornea regeneration and transplantation.


Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis.

  • Zhou Zhou‎ et al.
  • International journal of biological sciences‎
  • 2018‎

Since the five-year survival rate is less than 5%, pancreatic ductal adenocarcinoma (PDAC) remains the 4th cause of cancer-related death. Although PDAC has been repeatedly researched in recent years, it is still predicted to be the second leading cause of cancer death by year 2030. In our study, the differentially expressed genes in dataset GSE62452 were used to construct a co-expression network by WGCNA. The yellow module related to grade of PDAC was screened. Combined with co-expression network and PPI network, 36 candidates were screened. After survival and regression analysis by using GSE62452 and TCGA dataset, we identified 10 real hub genes (CCNA2, CCNB1, CENPF, DLGAP5, KIF14, KIF23, NEK2, RACGAP1, TPX2 and UBE2C) tightly related to progression of PDAC. According to Oncomine database and The Human Protein Atlas (HPA), we found that all real hub genes were overexpressed in pancreatic carcinoma compared with normal tissues on transcriptional and translational level. ROC curve was plotted and AUC was calculated to distinguish recurrent and non-recurrent PDAC and every AUC of the real hub gene was greater than 0.5. Finally, functional enrichment analysis and gene set enrichment (GSEA) was performed and both of them showed the cell cycle played a vital role in PDAC.


Decreasing CB1 receptor signaling in Kupffer cells improves insulin sensitivity in obese mice.

  • Tony Jourdan‎ et al.
  • Molecular metabolism‎
  • 2017‎

Obesity-induced accumulation of ectopic fat in the liver is thought to contribute to the development of insulin resistance, and increased activity of hepatic CB1R has been shown to promote both processes. However, lipid accumulation in liver can be experimentally dissociated from insulin resistance under certain conditions, suggesting the involvement of additional mechanisms. Obesity is also associated with pro-inflammatory changes which, in turn, can promote insulin resistance. Kupffer cells (KCs), the liver's resident macrophages, are the major source of pro-inflammatory cytokines in the liver, such as TNF-α, which has been shown to inhibit insulin signaling in multiple cell types, including hepatocytes. Here, we sought to identify the role of CB1R in KCs in obesity-induced hepatic insulin resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: