Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Differential genetic regulation of canine hip dysplasia and osteoarthritis.

  • Zhengkui Zhou‎ et al.
  • PloS one‎
  • 2010‎

Canine hip dysplasia (HD) is a common polygenic trait characterized by hip malformation that results in osteoarthritis (OA). The condition in dogs is very similar to developmental dysplasia of the human hip which also leads to OA.


Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize.

  • Chunhui Li‎ et al.
  • BMC biology‎
  • 2015‎

A genome-wide association study (GWAS) is the foremost strategy used for finding genes that control human diseases and agriculturally important traits, but it often reports false positives. In contrast, its complementary method, linkage analysis, provides direct genetic confirmation, but with limited resolution. A joint approach, using multiple linkage populations, dramatically improves resolution and statistical power. For example, this approach has been used to confirm that many complex traits, such as flowering time controlling adaptation in maize, are controlled by multiple genes with small effects. In addition, genotyping by sequencing (GBS) at low coverage not only produces genotyping errors, but also results in large datasets, making the use of high-throughput sequencing technologies computationally inefficient or unfeasible.


Evaluation of the Potential for Genomic Selection to Improve Spring Wheat Resistance to Fusarium Head Blight in the Pacific Northwest.

  • Haixiao Dong‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Fusarium Head Blight (FHB) has emerged in spring wheat production in Pacific Northwest during the last decade due to factors including climate changes, crop rotations, and tillage practices. A breeding population with 170 spring wheat lines was established and screened over a 2-year period in multiple locations for FHB incidence (INC), severity (SEV), and deposition of the mycotoxin, deoxynivalenol (DON). A genome-wide association study suggested that the detectable number of genetic loci and effects are limited for marker-assisted selection. In conjunction with the success of breeding on FHB resistance in other programs, genomic selection (GS) was suggested as a better option. To evaluate the prediction accuracy of GS in the current breeding population, we conducted a variety of validations by varying proportions of testing populations and cohorts based on both FHB resistance and market class, including soft white spring (SWS), hard white spring (HWS), and hard red spring (HRS). We found that INC had higher heritability, higher correlation across years and locations, and higher prediction accuracy than SEV and DON. Prediction accuracy varied among the scenarios that restricted the testing population to a certain cohort. For a small set of newly developed or introduced lines (<17), prediction accuracy will be about 60% if the lines have similar genetic relationships as those among the current 170-line training population. However, we expect a lower prediction accuracy if new lines are selected for a specific characteristic, such as FHB resistance or market class. With the exception of DON in the SWS lines, the current training population is capable of making reasonably accurate predictions for FHB-resistant lines in most of the major market classes. For SWS, adding more lines or further phenotyping is required to improve prediction accuracy. These results demonstrate the potential and challenges of GS, especially for developing FHB-resistant varieties in the SWS market class.


Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat.

  • Kendra L Jernigan‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Soft white wheat is used in domestic and foreign markets for various end products requiring specific quality profiles. Phenotyping for end-use quality traits can be costly, time-consuming and destructive in nature, so it is advantageous to use molecular markers to select experimental lines with superior traits. An association mapping panel of 469 soft white winter wheat cultivars and advanced generation breeding lines was developed from regional breeding programs in the U.S. Pacific Northwest. This panel was genotyped on a wheat-specific 90 K iSelect single nucleotide polymorphism (SNP) chip. A total of 15,229 high quality SNPs were selected and combined with best linear unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the panel. Genome-wide association mapping was conducted using the Fixed and random model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait associations were detected across 19 chromosomes. Potentially new loci for total flour yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation and flour swelling volume were also detected. Better understanding of the genetic factors impacting end-use quality enable breeders to more effectively discard poor quality germplasm and increase frequencies of favorable end-use quality alleles in their breeding populations.


Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle.

  • Xu Zhang‎ et al.
  • PloS one‎
  • 2017‎

The growth and maturity of cattle body size affect not only feed efficiency, but also productivity and longevity. Dissecting the genetic architecture of body size is critical for cattle breeding to improve both efficiency and productivity. The volume and weight of body size are indicated by several measurements. Among them, Heart Girth (HG) and Hip Height (HH) are the most important traits. They are widely used as predictors of body weight (BW). Few association studies have been conducted for HG and HH in cattle focusing on single growth stage. In this study, we extended the Genome-wide association studies to a full spectrum of four growth stages (6-, 12-, 18-, and 24-months after birth) in Chinese Holstein heifers. The whole genomic single nucleotide polymorphisms (SNPs) were obtained from the Illumina BovineSNP50 v2 BeadChip genotyped on 3,325 individuals. Estimated breeding values (EBVs) were derived for both HG and HH at the four different ages and analyzed separately for GWAS by using the Fixed and random model Circuitous Probability Unification (FarmCPU) method. In total, 27 SNPs were identified to be significantly associated with HG and HH at different growth stages. We found 66 candidate genes located nearby the associated SNPs, including nine genes that were known as highly related to development and skeletal and muscular growth. In addition, biological function analysis was performed by Ingenuity Pathway Analysis and an interaction network related to development was obtained, which contained 16 genes out of the 66 candidates. The set of putative genes provided valuable resources and can help elucidate the genomic architecture and mechanisms underlying growth traits in dairy cattle.


Genome-wide association study Identified multiple Genetic Loci on Chilling Resistance During Germination in Maize.

  • Guanghui Hu‎ et al.
  • Scientific reports‎
  • 2017‎

Maize (Zea mays, L.) cultivation has expanded greatly from tropical to temperate zones; however, its sensitivity to chilling often results in decreased germination rates, weak seedlings with reduced survival rates, and eventually lower yields. We conducted germination tests on the maize-282-diverse-panel (282 inbred lines) under normal (25 °C) and chilling (8 °C) conditions. Three raw measurements of germination were recorded under each condition: 1) germination rate, 2) days to 50% germination, and 3) germination index. Three relative traits were derived as indicators of cold-tolerance. By using the 2,271,584 single nucleotide polymorphisms (SNPs) on the panel from previous studies, and genome-wide association studies by using FarmCPU R package to identify 17 genetic loci associated with cold tolerance. Seven associated SNPs hit directly on candidate genes; four SNPs were in high linkage disequilibrium with candidate genes within 366 kb. In total, 18 candidate genes were identified, including 10 candidate genes supported by previous QTL studies and five genes supported by previous gene cloning studies in maize, rice, and Arabidopsis. Three new candidate genes revealed by two associated SNPs were supported by both QTL analyses and gene cloning studies. These candidate genes and associated SNPs provide valuable resources for future studies to develop cold-tolerant maize varieties.


GWAS-Based Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle.

  • Liyuan Liu‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

High-yield and high-quality of milk are the primary goals of dairy production. Understanding the genetic architecture underlying these milk-related traits is beneficial so that genetic variants can be targeted toward the genetic improvement. In this study, we measured five milk production and quality traits in Holstein cattle population from China. These traits included milk yield, fat, and protein. We used the estimated breeding values as dependent variables to conduct the genome-wide association studies (GWAS). Breeding values were estimated through pedigree relationships by using a linear mixed model. Genotyping was carried out on the individuals with phenotypes by using the Illumina BovineSNP150 BeadChip. The association analyses were conducted by using the fixed and random model Circulating Probability Unification (FarmCPU) method. A total of ten single-nucleotide polymorphisms (SNPs) were detected above the genome-wide significant threshold (p < 4.0 × 10-7), including six located in previously reported quantitative traits locus (QTL) regions. We found eight candidate genes within distances of 120 kb upstream or downstream to the associated SNPs. The study not only identified the effect of DGAT1 gene on milk fat and protein, but also discovered novel genetic loci and candidate genes related to milk traits. These novel genetic loci would be an important basis for molecular breeding in dairy cattle.


E183K Mutation in Chalcone Synthase C2 Causes Protein Aggregation and Maize Colorless.

  • Haixiao Dong‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Flavonoids give plants their rich colors and play roles in a number of physiological processes. In this study, we identified a novel colorless maize mutant showing reduced pigmentation throughout the whole life cycle by EMS mutagenesis. E183K mutation in maize chalcone synthase C2 (ZmC2) was mapped using MutMap strategy as the causal for colorless, which was further validated by transformation in Arabidopsis. We evaluated transcriptomic and metabolic changes in maize first sheaths caused by the mutation. The downstream biosynthesis was blocked while very few genes changed their expression pattern. ZmC2-E183 site is highly conserved in chalcone synthase among Plantae kingdom and within species' different varieties. Through prokaryotic expression, transient expression in maize leaf protoplasts and stable expression in Arabidopsis, we observed that E183K and other mutations on E183 could cause almost complete protein aggregation of chalcone synthase. Our findings will benefit the characterization of flavonoid biosynthesis and contribute to the body of knowledge on protein aggregation in plants.


Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits.

  • Ruicai Long‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2022‎

Alfalfa (Medicago sativa L.) is the most important legume forage crop worldwide with high nutritional value and yield. For a long time, the breeding of alfalfa was hampered by lacking reliable information on the autotetraploid genome and molecular markers linked to important agronomic traits. We herein reported the de novo assembly of the allele-aware chromosome-level genome of Zhongmu-4, a cultivar widely cultivated in China, and a comprehensive database of genomic variations based on resequencing of 220 germplasms. Approximate 2.74 Gb contigs (N50 of 2.06 Mb), accounting for 88.39% of the estimated genome, were assembled, and 2.56 Gb contigs were anchored to 32 pseudo-chromosomes. A total of 34,922 allelic genes were identified from the allele-aware genome. We observed the expansion of gene families, especially those related to the nitrogen metabolism, and the increase of repetitive elements including transposable elements, which probably resulted in the increase of Zhongmu-4 genome compared with Medicago truncatula. Population structure analysis revealed that the accessions from Asia and South America had relatively lower genetic diversity than those from Europe, suggesting that geography may influence alfalfa genetic divergence during local adaption. Genome-wide association studies identified 101 single nucleotide polymorphisms (SNPs) associated with 27 agronomic traits. Two candidate genes were predicted to be correlated with fall dormancy and salt response. We believe that the allele-aware chromosome-level genome sequence of Zhongmu-4 combined with the resequencing data of the diverse alfalfa germplasms will facilitate genetic research and genomics-assisted breeding in variety improvement of alfalfa.


Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB.

  • Fernanda F Caniato‎ et al.
  • PloS one‎
  • 2014‎

Root damage caused by aluminum (Al) toxicity is a major cause of grain yield reduction on acid soils, which are prevalent in tropical and subtropical regions of the world where food security is most tenuous. In sorghum, Al tolerance is conferred by SbMATE, an Al-activated root citrate efflux transporter that underlies the major Al tolerance locus, AltSB, on sorghum chromosome 3. We used association mapping to gain insights into the origin and evolution of Al tolerance in sorghum and to detect functional variants amenable to allele mining applications. Linkage disequilibrium across the AltSB locus decreased much faster than in previous reports in sorghum, and reached basal levels at approximately 1000 bp. Accordingly, intra-locus recombination events were found to be extensive. SNPs and indels highly associated with Al tolerance showed a narrow frequency range, between 0.06 and 0.1, suggesting a rather recent origin of Al tolerance mutations within AltSB. A haplotype network analysis suggested a single geographic and racial origin of causative mutations in primordial guinea domesticates in West Africa. Al tolerance assessment in accessions harboring recombinant haplotypes suggests that causative polymorphisms are localized to a ∼6 kb region including intronic polymorphisms and a transposon (MITE) insertion, whose size variation has been shown to be positively correlated with Al tolerance. The SNP with the strongest association signal, located in the second SbMATE intron, recovers 9 of the 14 highly Al tolerant accessions and 80% of all the Al tolerant and intermediately tolerant accessions in the association panel. Our results also demonstrate the pivotal importance of knowledge on the origin and evolution of Al tolerance mutations in molecular breeding applications. Allele mining strategies based on associated loci are expected to lead to the efficient identification, in diverse sorghum germplasm, of Al tolerant accessions able maintain grain yields under Al toxicity.


Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

  • Chao Fang‎ et al.
  • Genome biology‎
  • 2017‎

Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding.


Assessment of the Potential for Genomic Selection To Improve Husk Traits in Maize.

  • Zhenhai Cui‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Husk has multiple functions such as protecting ears from diseases, infection, and dehydration during development. Additionally, husks comprised of fewer, shorter, thinner, and narrower layers allow faster moisture evaporation of kernels prior to harvest. Intensive studies have been conducted to identify appropriate husk architecture by understanding the genetic basis of related traits, including husk length, husk layer number, husk thickness, and husk width. However, marker-assisted selection is inefficient because the identified quantitative trait loci and associated genetic loci could only explain a small proportion of total phenotypic variation. Genomic selection (GS) has been used successfully on many species including maize on other traits. Thus, the potential of using GS for husk traits to directly identify superior inbred lines, without knowing the specific underlying genetic loci, is well worth exploring. In this study, we compared four GS models on a maize association population with 498 inbred lines belonging to four subpopulations, including 27 lines in stiff stalk, 67 lines in non-stiff stalk, 193 lines in tropical-subtropical, and 211 lines in mixture subpopulations. Genomic Best Linear Unbiased Prediction with principal components as cofactor, performed the best and was selected to examine the impact of interaction between sampling proportions and subpopulations. We found that predictions on inbred lines in a subpopulation were benefited from excluding individuals from other subpopulations for training if the training population within the subpopulation was large enough. Husk thickness exhibited the highest prediction accuracy among all husk traits. These results gave strategic insight to improve husk architecture.


Graph pangenome captures missing heritability and empowers tomato breeding.

  • Yao Zhou‎ et al.
  • Nature‎
  • 2022‎

Missing heritability in genome-wide association studies defines a major problem in genetic analyses of complex biological traits1,2. The solution to this problem is to identify all causal genetic variants and to measure their individual contributions3,4. Here we report a graph pangenome of tomato constructed by precisely cataloguing more than 19 million variants from 838 genomes, including 32 new reference-level genome assemblies. This graph pangenome was used for genome-wide association study analyses and heritability estimation of 20,323 gene-expression and metabolite traits. The average estimated trait heritability is 0.41 compared with 0.33 when using the single linear reference genome. This 24% increase in estimated heritability is largely due to resolving incomplete linkage disequilibrium through the inclusion of additional causal structural variants identified using the graph pangenome. Moreover, by resolving allelic and locus heterogeneity, structural variants improve the power to identify genetic factors underlying agronomically important traits leading to, for example, the identification of two new genes potentially contributing to soluble solid content. The newly identified structural variants will facilitate genetic improvement of tomato through both marker-assisted selection and genomic selection. Our study advances the understanding of the heritability of complex traits and demonstrates the power of the graph pangenome in crop breeding.


Identification of Resistance to Wet Bubble Disease and Genetic Diversity in Wild and Cultivated Strains of Agaricus bisporus.

  • Yongping Fu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Outbreaks of wet bubble disease (WBD) caused by Mycogone perniciosa are increasing across the world and seriously affecting the yield of Agaricus bisporus. However, highly WBD-resistant strains are rare. Here, we tested 28 A. bisporus strains for WBD resistance by inoculating M. perniciosa spore suspension on casing soil, and assessed genetic diversity of these strains using 17 new simple sequence repeat (SSR) markers developed in this study. We found that 10 wild strains originating from the Tibetan Plateau in China were highly WBD-resistant strains, and 13 cultivated strains from six countries were highly susceptible strains. A total of 88 alleles were detected in these 28 strains, and the observed number of alleles per locus ranged from 2 to 8. Cluster and genetic structure analysis results revealed the wild resources from China have a relatively high level of genetic diversity and occur at low level of gene flow and introgression with cultivated strains. Moreover, the wild strains from China potentially have the consensus ancestral genotypes different from the cultivated strains and evolved independently. Therefore, the highly WBD-resistant wild strains from China and newly developed SSR markers could be used as novel sources for WBD-resistant breeding and quantitative trait locus (QTL) mapping of WBD-resistant gene of A. bisporus.


Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats.

  • Junjie Jiang‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2021‎

Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.


Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle.

  • Jinghang Zhou‎ et al.
  • BMC genomics‎
  • 2019‎

Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies (GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic data were collected for 2410 individuals measured during 1995-2017. By adding another 445 ancestors, a total of 2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410 individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K Bovine BeadChip.


Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation.

  • Zhou Tang‎ et al.
  • Scientific reports‎
  • 2021‎

Alfalfa is the most widely cultivated forage legume, with approximately 30 million hectares planted worldwide. Genetic improvements in alfalfa have been highly successful in developing cultivars with exceptional winter hardiness and disease resistance traits. However, genetic improvements have been limited for complex economically important traits such as biomass. One of the major bottlenecks is the labor-intensive phenotyping burden for biomass selection. In this study, we employed two alfalfa fields to pave a path to overcome the challenge by using UAV images with fully automatic field plot segmentation for high-throughput phenotyping. The first field was used to develop the prediction model and the second field to validate the predictions. The first and second fields had 808 and 1025 plots, respectively. The first field had three harvests with biomass measured in May, July, and September of 2019. The second had one harvest with biomass measured in September of 2019. These two fields were imaged one day before harvesting with a DJI Phantom 4 pro UAV carrying an additional Sentera multispectral camera. Alfalfa plot images were extracted by GRID software to quantify vegetative area based on the Normalized Difference Vegetation Index. The prediction model developed from the first field explained 50-70% (R Square) of biomass variation in the second field by incorporating four features from UAV images: vegetative area, plant height, Normalized Green-Red Difference Index, and Normalized Difference Red Edge Index. This result suggests that UAV-based, high-throughput phenotyping could be used to improve the efficiency of the biomass selection process in alfalfa breeding programs.


Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids.

  • Lanzhi Li‎ et al.
  • Nature communications‎
  • 2023‎

Genetic improvement of grain quality is more challenging in hybrid rice than in inbred rice due to additional nonadditive effects such as dominance. Here, we describe a pipeline developed for joint analysis of phenotypes, effects, and generations (JPEG). As a demonstration, we analyze 12 grain quality traits of 113 inbred lines (male parents), five tester lines (female parents), and 565 (113×5) of their hybrids. We sequence the parents for single nucleotide polymorphisms calling and infer the genotypes of the hybrids. Genome-wide association studies with JPEG identify 128 loci associated with at least one of the 12 traits, including 44, 97, and 13 loci with additive effects, dominant effects, and both additive and dominant effects, respectively. These loci together explain more than 30% of the genetic variation in hybrid performance for each of the traits. The JEPG statistical pipeline can help to identify superior crosses for breeding rice hybrids with improved grain quality.


BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions.

  • Meng Huang‎ et al.
  • GigaScience‎
  • 2019‎

Big datasets, accumulated from biomedical and agronomic studies, provide the potential to identify genes that control complex human diseases and agriculturally important traits through genome-wide association studies (GWAS). However, big datasets also lead to extreme computational challenges, especially when sophisticated statistical models are employed to simultaneously reduce false positives and false negatives. The newly developed fixed and random model circulating probability unification (FarmCPU) method uses a bin method under the assumption that quantitative trait nucleotides (QTNs) are evenly distributed throughout the genome. The estimated QTNs are used to separate a mixed linear model into a computationally efficient fixed effect model (FEM) and a computationally expensive random effect model (REM), which are then used iteratively. To completely eliminate the computationally expensive REM, we replaced REM with FEM by using Bayesian information criteria. To eliminate the requirement that QTNs be evenly distributed throughout the genome, we replaced the bin method with linkage disequilibrium information. The new method is called Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). Both real and simulated data analyses demonstrated that BLINK improves statistical power compared to FarmCPU, in addition to remarkably reducing computing time. Now, a dataset with one million individuals and one-half million markers can be analyzed within three hours, instead of one week using FarmCPU.


Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations.

  • Chunhui Li‎ et al.
  • BMC genomics‎
  • 2016‎

Maize requires more water than most other crops; therefore, the water use efficiency of this crop must be improved for maize production under undesirable land and changing environmental conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: