Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The Contributions of Mu-Opioid Receptors on Glutamatergic and GABAergic Neurons to Analgesia Induced by Various Stress Intensities.

  • Yinan Du‎ et al.
  • eNeuro‎
  • 2022‎

The endogenous opioid system plays a crucial role in stress-induced analgesia. Mu-opioid receptors (MORs), one of the major opioid receptors, are expressed widely in subpopulations of cells throughout the CNS. However, the potential roles of MORs expressed in glutamatergic (MORGlut) and γ-aminobutyric acidergic (MORGABA) neurons in stress-induced analgesia remain unclear. By examining tail-flick latencies to noxious radiant heat of male mice, here we investigated the contributions of MORGABA and MORGlut to behavioral analgesia and activities of neurons projecting from periaqueductal gray (PAG) to rostral ventromedial medulla (RVM) induced by a range of time courses of forced swim exposure. The moderate but not transitory or prolonged swim exposure induced a MOR-dependent analgesia, although all of these three stresses enhanced β-endorphin release. Selective deletion of MORGABA but not MORGlut clearly attenuated analgesia and blocked the enhancement of activities of PAG-RVM neurons induced by moderate swim exposure. Under transitory swim exposure, in contrast, selective deletion of MORGlut elicited an analgesia behavior via strengthening the activities of PAG-RVM neurons. These results indicate that MOR-dependent endogenous opioid signaling participates in nociceptive modulation in a wide range, not limited to moderate, of stress intensities. Endogenous activation of MORGABA exerts analgesia, whereas MORGlut produces antianalgesia. More importantly, with an increase of stress intensities, the efficiencies of MORs on nociception shifts from balance between MORGlut and MORGABA to biasing toward MORGABA-mediated processes. Our results point to the cellular dynamic characteristics of MORs expressed in excitatory and inhibitory neurons in pain modulation under various stress intensities.


Stress Controllability Modulates Basal Activity of Dopamine Neurons in the Substantia Nigra Compacta.

  • Li Yao‎ et al.
  • eNeuro‎
  • 2021‎

Prolonged stress induces neural maladaptations in the mesolimbic dopamine (DA) system and produces emotional and behavioral disorders. However, the effects of stress on activity of DA neurons are diverse and complex that hinge on the type, duration, intensity, and controllability of stressors. Here, controlling the duration, intensity, and type of the stressors to be identical, we observed the effects of stressor controllability on the activity of substantia nigra pars compacta (SNc) DA neurons in mice. We found that both lack and loss of control (LOC) over shock enhance the basal activity and intrinsic excitability of SNc DA neurons via modulation of Ih current, but not via corticosterone serum level. Moreover, LOC over shock produces more significant enhancement in the basal activity of SNc DA neurons than that produced by shock per se, and therefore attenuates the response to natural reward. This attenuation can be reversed by control over shock. These results indicate that although chronic stress per se tends to enhance the basal activity of SNc DA neurons, LOC over the stressor is able to induce a larger enhancement in the basal activity of SNc DA neurons and produce more severe behavioral deficits. However, control over stress ameliorates the deleterious effects of stress, highlighting the role of stress controllability.


Disynaptic Inhibitory Cerebellar Control Over Caudal Medial Accessory Olive.

  • Willem S van Hoogstraten‎ et al.
  • eNeuro‎
  • 2024‎

The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: