Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

miR-140-5p in Small Extracellular Vesicles From Human Papilla Cells Stimulates Hair Growth by Promoting Proliferation of Outer Root Sheath and Hair Matrix Cells.

  • Yuxin Chen‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

The application of dermal papilla cells to hair follicle (HF) regeneration has attracted a great deal of attention. However, cultured dermal papilla cells (DPCs) tend to lose their capacity to induce hair growth during passage, restricting their usefulness. Accumulating evidence indicates that DPCs regulate HF growth mainly through their unique paracrine properties, raising the possibility of therapies based on extracellular vesicles (EVs). In this study, we explored the effects of EVs from high- and low-passage human scalp follicle dermal papilla cells (DP-EVs) on activation of hair growth, and investigated the underlying mechanism. DP-EVs were isolated by ultracentrifugation and cultured with human scalp follicles, hair matrix cells (MxCs), and outer root sheath cells (ORSCs), and we found low-passage DP-EVs accelerated HF elongation and cell proliferation activation. High-throughput miRNA sequencing and bioinformatics analysis identified 100 miRNAs that were differentially expressed between low- (P3) and high- (P8) passage DP-EVs. GO and KEGG pathway analysis of 1803 overlapping target genes revealed significant enrichment in the BMP/TGF-β signaling pathways. BMP2 was identified as a hub of the overlapping genes. miR-140-5p, which was highly enriched in low-passage DP-EVs, was identified as a potential regulator of BMP2. Direct repression of BMP2 by miR-140-5p was confirmed by dual-luciferase reporter assay. Moreover, overexpression and inhibition of miR-140-5p in DP-EVs suppressed and increased expression of BMP signaling components, respectively, indicating that this miRNA plays a critical role in hair growth and cell proliferation. DP-EVs transport miR-140-5p from DPCs to epithelial cells, where it downregulates BMP2. Therefore, DPC-derived vesicular miR-140-5p represents a therapeutic target for alopecia.


Nanoscale microenvironment engineering based on layer-by-layer self-assembly to regulate hair follicle stem cell fate for regenerative medicine.

  • Peng Chen‎ et al.
  • Theranostics‎
  • 2020‎

Hair regenerative medicine, a promising strategy for the treatment of hair loss, will likely involve the transplantation of autologous hair follicular stem cells (HFSCs) and dermal papilla cells (DPCs) into regions of hair loss. Cyclic hair regeneration results from the periodic partial activation of HFSCs. However, previous studies have not successfully achieved large-scale HFSC expansion in vitro without the use of feeder cells, with a lack of research focused on regulating HFSC fate for hair follicular (HF) regeneration. Hence, an emerging focus in regenerative medicine is the reconstruction of natural extracellular matrix (ECM) regulatory characteristics using biomaterials to generate cellular microenvironments for expanding stem cells and directing their fate for tissue regeneration. Methods: HFSCs were coated with gelatin and alginate using layer-by-layer (LbL) self-assembly technology to construct biomimetic ECM for HFSCs; after which transforming growth factor (TGF)-β2 was loaded into the coating layer, which served as a sustained-release signal molecule to regulate the fate of HFSCs both in vitro and in vivo. In vitro experiments (cell culture and siRNA) were employed to investigate the molecular mechanisms involved and in vivo implantation was carried out to evaluate hair induction efficiency. Results: Nanoscale biomimetic ECM was constructed for individual HFSCs, which allowed for the stable amplification of HFSCs and maintenance of their stem cell properties. TGF-β2 loading into the coating layer induced transformation of CD34+ stem cells into highly proliferating Lgr5+ stem cells, similar to the partial activation of HFSCs in HF regeneration. Thus, LbL coating and TGF-β2 loading partially reconstructed the quiescent and activated states, respectively, of stem cells during HF regeneration, thereby mimicking the microenvironment that regulates stem cell fate for tissue regeneration during HF cycling. Improved HF regeneration was achieved when the two HFSC states were co-transplanted with neonatal mouse dermal cells into nude mice. Conclusion: This study provides novel methods for the construction of stem cell microenvironments and experimental models of HF regeneration for the treatment of hair loss.


Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing.

  • Shune Xiao‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present.


Tissue engineering ECM-enriched controllable vascularized human microtissue for hair regenerative medicine using a biomimetic developmental approach.

  • Peng Chen‎ et al.
  • Journal of advanced research‎
  • 2022‎

Regenerative medicine is a promising approach for hair loss; however, its primary challenge is the inductivity of human dermal papilla cells (DPCs), which rapidly lose hair growth-inducing properties in 2D culture. Despite extensive research efforts to construct DPCs, current 3D microenvironments fabricated to restore hair inductivity remain insufficient.


Scalable and high-throughput production of an injectable platelet-rich plasma (PRP)/cell-laden microcarrier/hydrogel composite system for hair follicle tissue engineering.

  • Yufan Zhang‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Tissue engineering of hair follicles (HFs) has enormous potential for hair loss treatment. However, certain challenges remain, including weakening of the dermal papilla cell (DPC) viability, proliferation, and HF inducibility, as well as the associated inefficient and tedious preparation process required to generate extracellular matrix (ECM)-mimicking substrates for biomolecules or cells. Herein, we utilized gelatin methacryloyl (GelMA) and chitosan hydrogels to prepare scalable, monodispersed, and diameter-controllable interpenetrating network GelMA/chitosan-microcarriers (IGMs) loaded with platelet-rich plasma (PRP) and seeded with DPCs, on a high-throughput microfluidic chip.


The homing of exogenous hair follicle mesenchymal stem cells into hair follicle niches.

  • Kaitao Li‎ et al.
  • JCI insight‎
  • 2023‎

Hair loss is a debilitating condition associated with the depletion of dermal papilla cells (DPCs), which can be replenished by dermal sheath cells (DSCs). Hence, strategies aimed at increasing the populations of DPCs and DSCs hold promise for the treatment of hair loss. In this study, we demonstrated in mice that introduced exogenous DPCs and DSCs (hair follicle mesenchymal stem cells) could effectively migrate and integrate into the dermal papilla and dermal sheath niches, leading to enhanced hair growth and prolonged anagen phases. However, the homing rates of DPCs and DSCs were influenced by various factors, including recipient mouse depilation, cell passage number, cell dose, and immune rejection. Through in vitro and in vivo experiments, we also discovered that the CXCL13/CXCR5 pathway mediated the homing of DPCs and DSCs into hair follicle niches. This study underscores the potential of cell-based therapies for hair loss by targeted delivery of DPCs and DSCs to their respective niches and sheds light on the intriguing concept that isolated mesenchymal stem cells can home back to their original niche microenvironment.


Unlocking the vital role of host cells in hair follicle reconstruction by semi-permeable capsules.

  • Zhexiang Fan‎ et al.
  • PloS one‎
  • 2017‎

Organ regeneration is becoming a promising choice for many patients; however, many details about the mechanisms underlying organ regeneration remain unknown. As regenerative organs, hair follicles offer a good model to study the mechanisms associated with regenerative medicine. The relevant studies have mainly focused on donor cells, and there are no systematic studies involving the effect of host factors on hair follicle reconstruction. Thus, we intend to explore the effect of host cells on hair follicle reconstruction. Epidermal and dermal cells from red fluorescent protein (RFP) transgenic newborn mice were injected into green fluorescent protein (GFP) transgenic mice. In addition, we wrapped the mixed dermal and epidermal cells from GFP transgenic and RFP transgenic mice by the Cell-in-a-Box kit to form "capsules," so that the cells within would be isolated from host cells. These capsules were cultured in vitro and transplanted in vivo. Fully developed reconstructed hair follicles were observed after the injection of mixed cells. These reconstructed follicles mainly consisted of donor cells, as well as a small number of host cells. The encapsulated cells gradually aggregated into cell spheres in vitro without apparent differentiation towards hair follicles. With respect to the transplanted capsules, concentric circle structures were observed, but no hair follicles or hair shafts formed. When the concentric circle structures were transplanted in vivo, mature hair follicles were observed 30 days later. Host cells were found in the reconstructed hair follicles. Thus, we conclude that host cells participate in the process of hair follicle reconstruction, and they play a vital role in the process, especially for the maturation of reconstructed hair follicles. Furthermore, we established a special hair follicle reconstruction system with the help of capsules: transplant cells were isolated from host, but other factors from host could exchange with cells inside.


6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

  • Yong Miao‎ et al.
  • PloS one‎
  • 2013‎

Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.


Smurf2-induced degradation of SMAD2 causes inhibition of hair follicle stem cell differentiation.

  • Bojie Lin‎ et al.
  • Cell death discovery‎
  • 2022‎

Hair follicle stem cells (HFSCs) are implicated in the formation of hair follicles and epidermis. This study aims to clarify the role of SMAD2 in regulating the differentiation of HFSCs, which is involved with Smurf2. Functional assays were carried out in human HFSCs to assess the effect of SMAD2 and Smurf2 with altered expression on growth dynamics of HFSCs. Ubiquitination of SMAD2 and its protein stability were assessed. The binding relationship between NANOG and DNMT1 was assessed. A mouse skin wound model was induced to verify the effects of Smurf2/SMAD2/NANOG/DNMT1 on wound healing. SMAD2 overexpression was observed in HFSCs during differentiation and its ectopic expression contributed to promotion of differentiation and apoptosis of HFSCs while arresting cell proliferation. Mechanistic investigations indicated that Smurf2 promoted the ubiquitination and degradation of SMAD2, thus causing downregulation of SMAD2 expression. By this mechanism, NANOG expression was reduced and the subsequent DNMT1 transcriptional expression was also diminished, leading to suppression of differentiation and apoptosis of HFSCs while stimulating cell proliferation. Moreover, in vivo data showed that Smurf2 upregulation limited epidermal wound healing in mice by inhibiting the SMAD2/NANOG/DNMT1 axis. Our work proposed a potential target regarding SMAD2 restoration in promoting HFSC differentiation and skin wound healing.


An optimized force-triggered density gradient sedimentation method for isolation of pelage follicle dermal papilla cells from neonatal mouse skin.

  • Lijuan Du‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

The dermal papilla cells are a specialized population of mesenchymal cells located at the base of the hair follicle (HF), which possess the capacity to regulate HF morphogenesis and regeneration. However, lack of cell-type specific surface markers restricts the isolation of DP cells and application for tissue engineering purposes.


Establishment of an Efficient Primary Culture System for Human Hair Follicle Stem Cells Using the Rho-Associated Protein Kinase Inhibitor Y-27632.

  • Lihong Wen‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Hair follicle tissue engineering is a promising strategy for treating hair loss. Human hair follicle stem cells (hHFSCs), which play a key role in the hair cycle, have potential applications in regenerative medicine. However, previous studies did not achieve efficient hHFSC expansion in vitro using feeder cells. Therefore, there is a need to develop an efficient primary culture system for the expansion and maintenance of hHFSCs.


A Novel and Convenient Method for the Preparation and Activation of PRP without Any Additives: Temperature Controlled PRP.

  • Lijuan Du‎ et al.
  • BioMed research international‎
  • 2018‎

Platelet rich plasma (PRP) is a concentrate of autologous platelets which contain enrichment growth factors (GFs). However, the addition of exogenous anticoagulant and procoagulant may result in clinical side effects and raise the price of PRP. Herein, we report a novel method named temperature controlled PRP (t-PRP), in which exogenous additives are dispensable in the preparation and activation process. Human blood samples were processed by a two-step centrifugation process under hypothermic conditions (4°C) to obtain t-PRP and rewarming up to 37°C to activate t-PRP. Contemporary PRP (c-PRP) was processed as the control. t-PRP showed a physiological pH value between 7.46 and 7.48 and up to 6.58 ± 0.45-fold significantly higher platelet concentration than that of whole blood compared with c-PRP (4.06-fold) in the preparation process. Meanwhile, t-PRP also maintained a stable GF level between plasma and PRP. After activation, t-PRP demonstrated natural fiber scaffolding, which trapped more platelet and GFs, and exhibited a slow release and degradation rate of GFs. In addition, t-PRP exhibited the function of promoting wound healing. t-PRP is a novel and convenient method for the preparation and activation of PRP without any additives. Compared to c-PRP, t-PRP reflects more physiologic characteristics while maintaining high quality.


Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism.

  • Gaofeng Wang‎ et al.
  • Science advances‎
  • 2023‎

Tissue injury induces metabolic changes in stem cells, which likely modulate regeneration. Using a model of organ regeneration called wound-induced hair follicle neogenesis (WIHN), we identified skin-resident bacteria as key modulators of keratinocyte metabolism, demonstrating a positive correlation between bacterial load, glutamine metabolism, and regeneration. Specifically, through comprehensive multiomic analysis and single-cell RNA sequencing in murine skin, we show that bacterially induced hypoxia drives increased glutamine metabolism in keratinocytes with attendant enhancement of skin and hair follicle regeneration. In human skin wounds, topical broad-spectrum antibiotics inhibit glutamine production and are partially responsible for reduced healing. These findings reveal a conserved and coherent physiologic context in which bacterially induced metabolic changes improve the tolerance of stem cells to damage and enhance regenerative capacity. This unexpected proregenerative modulation of metabolism by the skin microbiome in both mice and humans suggests important methods for enhancing regeneration after injury.


Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3.

  • Dongwon Kim‎ et al.
  • Nature communications‎
  • 2019‎

How developmental programs reactivate in regeneration is a fundamental question in biology. We addressed this question through the study of Wound Induced Hair follicle Neogenesis (WIHN), an adult organogenesis model where stem cells regenerate de novo hair follicles following deep wounding. The exact mechanism is uncertain. Here we show that self-noncoding dsRNA activates the anti-viral receptor toll like receptor 3 (TLR3) to induce intrinsic retinoic acid (RA) synthesis in a pattern that predicts new hair follicle formation after wounding in mice. Additionally, in humans, rejuvenation lasers induce gene expression signatures for dsRNA and RA, with measurable increases in intrinsic RA synthesis. These results demonstrate a potent stimulus for RA synthesis by non-coding dsRNA, relevant to their broad functions in development and immunity.


Ficoll density gradient sedimentation isolation of pelage hair follicle mesenchymal stem cells from adult mouse back skin: a novel method for hair follicle mesenchymal stem cells isolation.

  • Yuyang Gan‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring.


Bacteria induce skin regeneration via IL-1β signaling.

  • Gaofeng Wang‎ et al.
  • Cell host & microbe‎
  • 2021‎

Environmental factors that enhance regeneration are largely unknown. The immune system and microbiome are attributed roles in repairing and regenerating structure but their precise interplay is unclear. Here, we assessed the function of skin bacteria in wound healing and wound-induced hair follicle neogenesis (WIHN), a rare adult organogenesis model. WIHN levels and stem cell markers correlate with bacterial counts, being lowest in germ-free (GF), intermediate in conventional specific pathogen-free (SPF), and highest in wild-type mice, even those infected with pathogenic Staphylococcus aureus. Reducing skin microbiota via cage changes or topical antibiotics decreased WIHN. Inflammatory cytokine IL-1β and keratinocyte-dependent IL-1R-MyD88 signaling are necessary and sufficient for bacteria to promote regeneration. Finally, in a small trial, a topical broad-spectrum antibiotic also slowed skin wound healing in adult volunteers. These results demonstrate a role for IL-1β to control morphogenesis and support the need to reconsider routine applications of topical prophylactic antibiotics.


Autophagy induces hair follicle stem cell activation and hair follicle regeneration by regulating glycolysis.

  • Pingping Sun‎ et al.
  • Cell & bioscience‎
  • 2024‎

Hair follicle stem cells (HFSCs) typically remain quiescent and are activated only during the transition from telogen to anagen to ensure that the hair follicle enters a new cycle. The metabolic behavior of stem cells in tissues is regulated by macroautophagy/autophagy, and changes in HFSC metabolism directly affect their activation and maintenance. However, the role of autophagy in the regulation of HFSC metabolism and function remains unclear.


Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle.

  • Chun Hou‎ et al.
  • Experimental and therapeutic medicine‎
  • 2016‎

According to the growth state of hair follicles, the hair cycle is divided into the anagen, catagen and telogen phases. A number of biological factors have been shown to synchronize with the hair cycle. As an important component of the hair follicle, the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of matrix metalloproteinases; TIMPs). It has been reported that MMP-2, MMP-9 and TIMP-1 are associated with the hair cycle; however, their expression levels during the hair cycle have not been fully elucidated. Reverse transcription-polymerase chain reaction and ELISA analysis in the present study demonstrated that, during the hair cycle in mice, mRNA and protein expression levels of MMP-2 and MMP-9 were elevated in the anagen phase, and decreased during the catagen and telogen phases. Furthermore, SDS-PAGE gelatin zymography demonstrated that their activities fluctuated in the hair cycle. Additionally, it was observed that the mRNA and protein expression levels of TIMP-1 and TIMP-2 were negatively correlated with MMP-9 and MMP-2, respectively. Immunohistochemical examination demonstrated that MMP-2 and TIMP-2 were present in all structures of the hair follicle. However, MMP-9 and TIMP-1 were locally expressed in certain areas of the hair follicle, such as in the sebaceous gland at the anagen, catagen and telogen phases, and in the inner root sheath at the catagen phase. These results suggested that MMP-2 and MMP-9 may serve an important role in the hair growth cycle.


Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth.

  • Yuxin Chen‎ et al.
  • Theranostics‎
  • 2020‎

Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 μm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and β-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.


Nanoscale microenvironment engineering for expanding human hair follicle stem cell and revealing their plasticity.

  • Peng Chen‎ et al.
  • Journal of nanobiotechnology‎
  • 2021‎

Periodically regenerated hair follicles provide an excellent research model for studying tissue regeneration and stem cell homeostasis. Periodic activation and differentiation of hair follicle stem cells (HFSCs) fuel cyclical bouts of hair regeneration. HFSCs represent an excellent paradigm for studying tissue regeneration and somatic stem cell homeostasis. However, these crucial studies are hampered by the lack of a culture system able to stably expand human HFSCs and regulate their fate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: