Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Peiminine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways.

  • Zhi Zheng‎ et al.
  • Oncotarget‎
  • 2017‎

Peiminine, a compound extracted from the bulbs of Fritillaria thunbergii and traditionally used as a medication in China and other Asian countries, was reported to inhibit colorectal cancer cell proliferation and tumor growth by inducing autophagic cell death. However, its mechanism of anticancer action is not well understood, especially at the metabolic level, which was thought to primarily account for peiminine's efficacy against cancer. Using an established metabolomic profiling platform combining ultra-performance liquid chromatography/tandem mass spectrometry with gas chromatography/mass spectrometry, we identified metabolic alterations in colorectal cancer cell line HCT-116 after peiminine treatment. Among the identified 236 metabolites, the levels of 57 of them were significantly (p < 0.05) different between peiminine-treated and -untreated cells in which 45 metabolites were increased and the other 12 metabolites were decreased. Several of the affected metabolites, including glucose, glutamine, oleate (18:1n9), and lignocerate (24:0), may be involved in regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway and in the oxidative stress response upon peiminine exposure. Peiminine predominantly modulated the pathways responsible for metabolism of amino acids, carbohydrates, and lipids. Collectively, these results provide new insights into the mechanisms by which peiminine modulates metabolic pathways to inhibit colorectal cancer cell growth, supporting further exploration of peiminine as a potential new strategy for treating colorectal cancer.


Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies.

  • Ran Wu‎ et al.
  • Oncotarget‎
  • 2016‎

Allopurinol is widely used for hyperuricemia and gouty arthritis, but is associated with cutaneous adverse drug reactions (CADRs). Recently, HLA-B*58:01 allele was identified as a strong genetic marker for allopurinol-induced CADRs in Han Chinese. However, the magnitude of association and diagnosis value of HLA-B*58:01 in allopurinol-induced CADRs remain inconclusive. To investigate this inconsistency, we conducted a meta-analysis of 21 pharmacogenetic studies, including 551 patients with allopurinol-induced CADRs, and 2,370 allopurinol-tolerant controls as well as 9,592 healthy volunteers. The summary OR for allopurinol-induced CADRs among HLA-B*58:01 carriers was 82.77 (95% CI: 41.63 - 164.58, P < 10-5) and 100.87 (95% CI: 63.91 - 159.21, P < 10-5) in matched and population based studies, respectively. Significant results were also observed when stratified by outcomes and ethnicity. Furthermore, the summary estimates for quantitative analysis of HLA-B*58:01 allele carriers in allopurinol-induced CADRs screening were as follows: sensitivity, 0.93 (95% CI: 0.85 - 0.97); specificity, 0.89 (95% CI: 0.87 - 0.91); positive likelihood ratio, 8.24 (95% CI: 6.92 - 9.81); negative likelihood ratio, 0.084 (95% CI: 0.039 - 0.179); and diagnostic odds ratio, 98.59 (95% CI: 43.31 - 224.41). The AUSROC was 0.92 (95% CI: 0.89-0.94), indicating the high diagnostic performance. Our results indicated that allopurinol-SCAR is strongly associated with HLA-B*58:01, and HLA-B*58:01 is a highly specific and effective genetic marker for the detection allopurinol-induced CADRs, especially for Asian descents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: