Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain.

  • Siling Liu‎ et al.
  • Genome research‎
  • 2017‎

Long noncoding RNAs (lncRNAs) mediate important epigenetic regulation in a wide range of biological processes and diseases. We applied comprehensive analyses of RNA-seq and CAGE-seq (cap analysis of gene expression and sequencing) to characterize the dynamic changes in lncRNA expression in rhesus macaque (Macaca mulatta) brain in four representative age groups. We identified 18 anatomically diverse lncRNA modules and 14 mRNA modules representing spatial, age, and sex specificities. Spatiotemporal- and sex-biased changes in lncRNA expression were generally higher than those observed in mRNA expression. A negative correlation between lncRNA and mRNA expression in cerebral cortex was observed and functionally validated. Our findings offer a fresh insight into spatial-, age-, and sex-biased changes in lncRNA expression in macaque brain and suggest that the changes represent a previously unappreciated regulatory system that potentially contributes to brain development and aging.


1-Methyl-4-phenylpyridinium stereotactic infusion completely and specifically ablated the nigrostriatal dopaminergic pathway in rhesus macaque.

  • Xiaoguang Lei‎ et al.
  • PloS one‎
  • 2015‎

Complete and specific ablation of a single dopaminergic (DA) pathway is a critical step to distinguish the roles of DA pathways in vivo. However, this kind of technique has not been reported in non-human primates. This study aimed to establish a lesioning method with a complete and specific ablation.


A quantitative approach to developing Parkinsonian monkeys (Macaca fascicularis) with intracerebroventricular 1-methyl-4-phenylpyridinium injections.

  • Hao Li‎ et al.
  • Journal of neuroscience methods‎
  • 2015‎

Non-human primate Parkinson's disease (PD) models are essential for PD research. The most extensively used PD monkey models are induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the modeling processes of developing PD monkeys cannot be quantitatively controlled with MPTP. Therefore, a new approach to quantitatively develop chronic PD monkey models will help to advance the goals of "reduction, replacement and refinement" in animal experiments.


The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson's disease monkeys.

  • Hao Li‎ et al.
  • Scientific reports‎
  • 2015‎

Transcranial direct current stimulation (tDCS) is a useful noninvasive technique of cortical brain stimulation for the treatment of neurological disorders. Clinical research has demonstrated tDCS with anodal stimulation of primary motor cortex (M1) in Parkinson's disease (PD) patients significantly improved their motor function. However, few studies have been focused on the optimization of parameters which contributed significantly to the treatment effects of tDCS and exploration of the underline neuronal mechanisms. Here, we used different stimulation parameters of anodal tDCS on M1 for the treatment of aged advanced PD monkeys induced with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) administration, and then analyzed the temporary and accumulated effects of tDCS treatment. The results indicated anodal tDCS on M1 very significantly improved motor ability temporarily; importantly, the treatment effects of anodal tDCS on M1 were quantitatively correlated to the accumulated stimulation instead of the stimuli intensity or duration respectively. In addition, c-fos staining showed tDCS treatment effects activated the neurons both in M1 and substantia nigra (SN). Therefore, we propose that long time and continue anodal tDCS on M1 is a better strategy to improve the motor symptoms of PD than individual manipulation of stimuli intensity or duration.


Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived Lyon NSCs.

  • Tanzeel Huma‎ et al.
  • Neuroscience‎
  • 2017‎

Embryonic stem cells (ESCs) have enormous potential as novel cell-based therapies, but their effectiveness depends on stem cell differentiation and specific signaling regulators, which remain poorly understood. In this study, a kisspeptin peptide (KP-10) was used at different dosages to determine whether rhesus macaque-derived tau GFP-Lyon ES cells underwent kisspeptin-specific neuronal differentiation. It was found that KP-10 exhibited an anti-proliferative effect on the cells and led to morphological changes and cellular differentiation consistent with neuronal stem cell (NSC) development. The cells differentiated into Gonadotrophin Releasing Hormone (GnRH) neuronal-like cell types in response to the KP-10 treatment. There has been a previously observed connection between kisspeptin signaling, GnRH neurons and their dysfunction found in congenital disorders like idiopathic hypogonadotropic hypogonadism (IHH). Although therapeutics are a still a far-off goal, the formation and development of GnRH-positive neuronal-like cells following the application of KP-10 to Lyon NSC cells opens the door for future NSC-based therapies to treat specific reproductive disorders.


Annotation and functional clustering of circRNA expression in rhesus macaque brain during aging.

  • Kaiyu Xu‎ et al.
  • Cell discovery‎
  • 2018‎

The abundance and function of circular RNAs (circRNAs) in mammalian brain have been reported, but their alterations in the biology of brain aging remain elusive. Here, using deep RNA profiling with linear RNA digestion by RNase R we explored a comprehensive map of changes in circRNA expression in rhesus macaque (macaca mulatta) brain in two age groups from adult (10 y) to aged (20 y) periods. Total 17,050 well expressed, stable circRNAs were identified. Cluster analysis reveals that dynamic changes in circRNA expression show the spatial-, sex- and age-biased specificities. On the basis of separate profiling of the RNAs, age-related circRNAs show differential correlation to host mRNA expression. Furthermore, two voltage-dependent L- and R-type calcium channel gene-derived circCACNA2D1 and circCACNA1E negatively regulate their host mRNA expression. Our results demonstrate the power of changes in circRNA expression to reveal insights into a potentially circRNA-mediated regulatory mechanism underlying the biology of brain aging.


Spatiotemporal proteomic atlas of multiple brain regions across early fetal to neonatal stages in cynomolgus monkey.

  • Jingkuan Wei‎ et al.
  • Nature communications‎
  • 2023‎

Fetal stages are critical periods for brain development. However, the protein molecular signature and dynamics of the human brain remain unclear due to sampling difficulty and ethical limitations. Non-human primates present similar developmental and neuropathological features to humans. This study constructed a spatiotemporal proteomic atlas of cynomolgus macaque brain development from early fetal to neonatal stages. Here we showed that (1) the variability across stages was greater than that among brain regions, and comparisons of cerebellum vs. cerebrum and cortical vs. subcortical regions revealed region-specific dynamics across early fetal to neonatal stages; (2) fluctuations in abundance of proteins associated with neural disease suggest the risk of nervous disorder at early fetal stages; (3) cross-species analysis (human, monkey, and mouse) and comparison between proteomic and transcriptomic data reveal the proteomic specificity and genes with mRNA/protein discrepancy. This study provides insight into fetal brain development in primates.


Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells.

  • Xiaping He‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

Recent studies have demonstrated that formaldehyde (FA)-induced neurotoxicity is important in the pathogenesis of Alzheimer's disease (AD). Elevated levels of FA have been associated with memory impairments and the main hallmarks of AD pathology, including β-amyloid plaques, tau protein hyperphosphorylation, and neuronal loss. Resveratrol (Res), as a polyphenol anti-oxidant, has been considered to have therapeutic potential for the treatment of AD. However, it has not been elucidated whether Res can exert its neuroprotective effects against FA-induced neuronal damages related to AD pathology. To answer this question, the effects of Res were investigated on Neuro-2a (N2a) cells prior to and after FA exposure. The experiments found that pre-treatment with Res significantly decreased FA-induced cytotoxicity, reduced cell apoptosis rates, and inhibited the hyperphosphorylation of tau protein at Thr181 in a dose-dependent manner. Further tests revealed that this effect was associated with the suppression of glycogen synthase kinase (GSK-3β) and calmodulin-dependent protein kinase II (CaMKII) activities, both of which are important kinases for tau protein hyperphosphorylation. In addition, Res was found to increase the activity of phosphoseryl/phosphothreonyl protein phosphatase-2A (PP2A). In summary, these findings provide evidence that Res protects N2a cells from FA-induced damages and suggests that inhibition of GSK-3β and CaMKII and the activation of PP2A by Res protect against the hyperphosphorylation and/or mediates the dephosphorylation of tau protein, respectively. These possible mechanisms underlying the neuroprotective effects of Res against FA-induced damages provide another perspective on AD treatment via inhibition of tau protein hyperhosphorylation.


Chronic Glucocorticoid Exposure Induces Depression-Like Phenotype in Rhesus Macaque (Macaca Mulatta).

  • Dongdong Qin‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

It has long been observed in humans that the occurrence of depressive symptoms is often accompanied by the dysfunction of hypothalamic-pituitary-adrenal (HPA) axis. The rodent experiments also showed that chronic corticosterone exposure could induce depression-like phenotype. However, rodents are phylogenetically distant from humans. In contrast, non-human primates bear stronger similarities with humans, suggesting research on primates would provide an important complement. For the first time, we investigated the effects of chronic glucocorticoid exposure on rhesus macaques. Seven male macaques were selected and randomized to glucocorticoid or vehicle groups, which were subjected to either prednisolone acetate or saline injections, respectively. The depression-like behaviors were assessed weekly, and the body weights, HPA axis reactivity, sucrose solution consumption and monoaminergic neurotransmitters were further compared between these two groups. The glucocorticoid group was not found to display more depression-like behaviors than the vehicle group until 7 weeks after treatment. Chronic glucocorticoid exposure significantly decreased the levels of cortisol determined from blood (a biomarker for acute HPA axis reactivity) but increased the hair cortisol concentrations (a reliable indicator of chronic HPA axis reactivity) compared with controls. The glucocorticoid group was also found to consume less sucrose solution than controls, a good manifestation of anhedonia. This could be possibly explained by lower dopamine (DA) levels in cerebrospinal fluid induced by chronic glucocorticoid treatment. The results presented here indicate that chronic glucocorticoid exposure could disturb both the acute and chronic HPA axis reactivity, which eventually disturbed the neurotransmitter system and led monkeys to display depression-like phenotype.


Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease.

  • Yaping Yan‎ et al.
  • NPJ biofilms and microbiomes‎
  • 2021‎

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. However, it is unclear whether microbiota and metabolites have demonstrated changes at early PD due to the difficulties in diagnosis and identification of early PD in clinical practice. In a previous study, we generated A53T transgenic monkeys with early Parkinson's symptoms, including anxiety and cognitive impairment. Here we analyzed the gut microbiota by metagenomic sequencing and metabolites by targeted gas chromatography. The gut microbiota analysis showed that the A53T monkeys have higher degree of diversity in gut microbiota with significantly elevated Sybergistetes, Akkermansia, and Eggerthella lenta compared with control monkeys. Prevotella significantly decreased in A53T transgenic monkeys. Glyceric acid, L-Aspartic acid, and p-Hydroxyphenylacetic acid were significantly elevated, whereas Myristic acid and 3-Methylindole were significantly decreased in A53T monkeys. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (KO0131) and the oxidative phosphorylation reaction (KO2147) were significantly increased in metabolic pathways of A53T monkeys. Our study suggested that the transgenic A53T and α-syn aggregation may affect the intestine microbiota and metabolites of rhesus monkeys, and the identified five compositional different metabolites that are mainly associated with mitochondrial dysfunction may be related to the pathogenesis of PD.


CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis.

  • Kaiyu Xu‎ et al.
  • Nature communications‎
  • 2020‎

Circular RNAs (circRNAs) are abundant in mammalian brain and some show age-dependent expression patterns. Here, we report that circGRIA1, a conserved circRNA isoform derived from the genomic loci of α-mino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit Gria1, shows an age-related and male-specific increase in expression in the rhesus macaque prefrontal cortex and hippocampus. We show circGRIA1 is predominantly localized to the nucleus, and find an age-related increase in its association with the promoter region of Gria1 gene, suggesting it has a regulatory role in Gria1 transcription. In vitro and in vivo manipulation of circGRIA1 negatively regulates Gria1 mRNA and protein levels. Knockdown of circGRIA1 results in an age-related improvement of synaptogenesis, and GluR1 activity-dependent synaptic plasticity in the hippocampal neurons in males. Our findings underscore the importance of circRNA regulation and offer an insight into the biology of brain aging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: