Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

The increasing prevalence of CPV-2c in domestic dogs in China.

  • Xiangqi Hao‎ et al.
  • PeerJ‎
  • 2020‎

Canine parvovirus type 2 (CPV-2), a serious pathogen, leads to high morbidity and mortality in dogs and several wild carnivore species. Although it is a DNA virus, it evolves particularly rapidly, with a genomic substitution rate of approximately 10-4 substitutions/site/year, close to that of some RNA viruses. Tracing the prevalence of CPV-2 in dogs is significant.


Trimethylamine N-oxide-derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials.

  • Bowen Li‎ et al.
  • Science advances‎
  • 2019‎

Materials that resist nonspecific protein adsorption are needed for many applications. However, few are able to achieve ultralow fouling in complex biological milieu. Zwitterionic polymers emerge as a class of highly effective ultralow fouling materials due to their superhydrophilicity, outperforming other hydrophilic materials such as poly(ethylene glycol). Unfortunately, there are only three major classes of zwitterionic materials based on poly(phosphorylcholine), poly(sulfobetaine), and poly(carboxybetaine) currently available. Inspired by trimethylamine N-oxide (TMAO), a zwitterionic osmolyte and the most effective protein stabilizer, we here report TMAO-derived zwitterionic polymers (PTMAO) as a new class of ultralow fouling biomaterials. The nonfouling properties of PTMAO were demonstrated under highly challenging conditions. The mechanism accounting for the extraordinary hydration of PTMAO was elucidated by molecular dynamics simulations. The discovery of PTMAO polymers demonstrates the power of molecular understanding in the design of new biomimetic materials and provides the biomaterials community with another class of nonfouling zwitterionic materials.


BmK NT1-induced neurotoxicity is mediated by PKC/CaMKⅡ-dependent ERK1/2 and p38 activation in primary cultured cerebellar granule cells.

  • Liping Shen‎ et al.
  • Toxicology‎
  • 2019‎

Voltage-gated sodium channels (VGSCs) represent molecular targets for a number of potent neurotoxins that affect the ion permeation or gating kinetics. BmK NT1, an α-scorpion toxin purified from Buthus martensii Karch (BMK), induces excitatory neurotoxicity by activation of VGSCs with subsequent overloading of intracellular Ca2+ in cerebellar granule cells (CGCs). In the current study, we further investigated signaling pathways responsible for BmK NT1-induced neurotoxicity in CGCs. BmK NT1 exposure induced neuronal death in different development stages of CGCs with similar potencies ranging from 0.21-0.48 μM. The maximal neuronal death induced by BmK NT1 gradually increased from 25.6% at 7 days in vitro (DIVs) to 42.1%, 47.8%, and 67.2% at 10, 13, and 16 DIVs, respectively, suggesting that mature CGCs are more vulnerable to BmK NT1 exposure. Application of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibitors, KN-62 or KN-93, but not Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609, completely abolished BmK NT1-induced neuronal death. Moreover, BmK NT1 exposure stimulated CaMKⅡ phosphorylation. BmK NT1 also stimulated extracellular regulated protein kinases 1/2 (ERK1/2) and p38 phosphorylation which was abolished by tetrodotoxin demonstrating the role of VGSCs on BmK NT1-induced ERK1/2 and p38 phosphorylation. However, BmK NT1 didn't affect c-Jun N-terminal kinase (JNK) phosphorylation. In addition, both ERK1/2 inhibitor, U0126 and p38 inhibitor, SB203580 attenuated BmK NT1-induced neuronal death. Both PKC inhibitor, Gö 6983 and CaMKⅡ inhibitor, KN-62 abolished BmK NT1-induced ERK1/2 and p38 phosphorylation. Considered together, these data demonstrate that BmK NT1-induced neurotoxicity is through PKC/CaMKⅡ mediated ERK1/2 and p38 activation.


Mature dendritic cell-derived dendrosomes swallow oxaliplatin-loaded nanoparticles to boost immunogenic chemotherapy and tumor antigen-specific immunotherapy.

  • Xing Chen‎ et al.
  • Bioactive materials‎
  • 2022‎

The cytomembrane-derived delivery platform represents a promising biomimetic strategy in oncotherapy. To achieve durable and reliable tumor inhibition, mature dendrosomes (mDs), which were isolated from bone marrow-derived dendritic cells undergoing CT26 tumor antigen (TA) stimulation, were fused with redox-responsive nanoparticles (NPs) that were composed of poly(disulfide ester amide) polymers with an intensified disulfide density and hydrophobic oxaliplatin (OXA) prodrugs with the ability to potentiate immunogenicity. In vitro and in vivo results revealed that NP/mDs could induce tumor cell death through mitochondrial pathway and thus created immunogenic microenvironments, but also elicited immunocyte differentiation by TA cross-dressing and infiltration by direct presentation. By further neutralizing immune-regulatory interaction, the administration of PD-L1 antibody (αPD-L1) greatly improved antitumor efficiency of NP/mDs. Furthermore, the effectors of host immune systems effectively inhibited the growth and metastasis of distal tumors, likely because the autologous TA evoked by OXA and allogeneic TA delivered by mDs acted as additional stimuli to reinforce the immune response of tumor-specific T cells and immunosurveillance toward oncogenesis. These results demonstrated that NP/mDs could simultaneously realize immunogenic chemotherapeutics and specific TA delivery. In combination with αPD-L1, the antitumor effect was further enhanced. Therefore, NP/mDs provide a promising strategy for the comprehensive treatment of malignancy.


Natural Changbai mineral water reduces obesity risk through regulating metabolism and gut microbiome in a hyperuricemia male mouse model.

  • Maichao Li‎ et al.
  • Frontiers in nutrition‎
  • 2024‎

Access to clean and safe drinking water is essential. This study aimed to evaluate the effect of a kind of small molecular natural mineral water, C-cell mineral water on hyperuricemia male mice metabolism condition. A 13-week drinking water intervention study was conducted in Uox-knockout mice (KO). The hepatic metabolite profiling and related genes expression were detected by UPLC-TOF-MS and transcriptomic, and the gut microbiota of KO mice was determined by metagenomics sequencing. Results showed that the body weight of mice fed with C-cell water was remarkably lower than that of control mice on D 77 and D 91. Hepatic metabolite profiling revealed a shift in the pathway of glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and biosynthesis of cofactors in KO mice fed with C-cell mineral water. Increased energy metabolism levels were related to increased hepatic expression of genes responsible for coenzyme metabolism and lipid metabolism. Gut microbiota was characterized by increasing activity of beneficial bacteria Blautia, and reducing activity of pathobiont bacteria Parasutterella. These genera have been reported to be associated with obesity. Small molecular mineral-rich natural water ingestion regulates metabolism and gut microbiota, protecting against obesity induced by hyperuricemia through mediating a microbiota-liver axis.


Sustained Release of Immunosuppressant by Nanoparticle-anchoring Hydrogel Scaffold Improved the Survival of Transplanted Stem Cells and Tissue Regeneration.

  • Ruixiang Li‎ et al.
  • Theranostics‎
  • 2018‎

The outcome of scaffold-based stem cell transplantation remains unsatisfied due to the poor survival of transplanted cells. One of the major hurdles associated with the stem cell survival is the immune rejection, which can be effectively reduced by the use of immunosuppressant. However, ideal localized and sustained release of immunosuppressant is difficult to be realized, because it is arduous to hold the drug delivery system within scaffold for a long period of time. In the present study, the sustained release of immunosuppressant for the purpose of improving the survival of stem cells was successfully realized by a nanoparticle-anchoring hydrogel scaffold we developed. Methods: Poly (lactic-co-glycolic acid) (PLGA) nanoparticles were modified with RADA16 (RNPs), a self-assembling peptide, and then anchored to a RADA16 hydrogel (RNPs + Gel). The immobilization of RNPs in hydrogel was measured in vitro and in vivo, including the Brownian motion and cumulative leakage of RNPs and the in vivo retention of injected RNPs with hydrogel. Tacrolimus, as a typical immunosuppressant, was encapsulated in RNPs (T-RNPs) that were anchored to the hydrogel and its release behavior were studied. Endothelial progenitor cells (EPCs), as model stem cells, were cultured in the T-RNPs-anchoring hydrogel to test the immune-suppressing effect. The cytotoxicity of the scaffold against EPCs was also measured compared with free tacrolimus-loaded hydrogel. The therapeutic efficacy of the scaffold laden with EPCs on the hind limb ischemia was further evaluated in mice. Results: The Brownian motion and cumulative leakage of RNPs were significantly decreased compared with the un-modified nanoparticles (NPs). The in vivo retention of injected RNPs with hydrogel was obviously longer than that of NPs with hydrogel. The release of tacrolimus from T-RNPs + Gel could be sustained for 28 days. Compared with free tacrolimus-loaded hydrogel, the immune responses were significantly reduced and the survival of EPCs was greatly improved both in vitro and in vivo. The results of histological evaluation, including accumulation of immune cells and deposition of anti-graft antibodies, further revealed significantly lessened immune rejection in T-RNPs-anchoring hydrogel group compared with other groups. In pharmacodynamics study, the scaffold laden with EPCs was applied to treat hind limb ischemia in mice and significantly promoted the blood perfusion (~91 % versus ~36 % in control group). Conclusion: The nanoparticle-anchoring hydrogel scaffold is promising for localized immunosuppressant release, thereby can enhance the survival of transplanted cells and finally lead to successful tissue regeneration.


Identification of NADPH oxidase family members associated with cold stress in strawberry.

  • Yunting Zhang‎ et al.
  • FEBS open bio‎
  • 2018‎

NADPH oxidase is encoded by a small gene family (Respiratory burst oxidase homologs, Rbohs) and plays an important role in regulating various biological processes. However, little information about this gene family is currently available for strawberry. In this study, a total of seven Rboh genes were identified from strawberry through genomewide analysis. Gene structure analysis showed the number of exons ranged from 10 to 23, implying that this variation occurred in FvRboh genes by the insertion and distribution of introns; the order and approximate size of exons were relatively conserved. FvRbohC was predicted to localize to the thylakoid membrane of the chloroplast, while other members were computed to localize to the plasma membrane, indicating different functions. Amino acid sequence alignment, conserved domain, and motif analysis showed that all identified FvRbohs had typical features of plant Rbohs. Phylogenetic analysis of Rbohs from strawberry, grape, Arabidopsis, and rice suggested that the FvRbohs could be divided into five subgroups and showed a closer relationship with those from grape and Arabidopsis than those from rice. The expression patterns of FvRboh genes in root, stem, leaf, flower, and fruit revealed robust tissue specificity. The expression levels of FvRbohA and FvRbohD were quickly induced by cold stress, followed by an increase in NADPH oxidase activity, leading to O2- accumulation and triggering the antioxidant reaction by the transient increases in SOD activity. This suggested these two genes may be involved in cold stress and defense responses in strawberry.


Association of acidic urine pH with impaired renal function in primary gout patients: a Chinese population-based cross-sectional study.

  • Yuwei He‎ et al.
  • Arthritis research & therapy‎
  • 2022‎

Patients with gout frequently have low urinary pH, which is associated with the nephrolithiasis. However, the specific distribution of urinary pH and potential relationship of acidic urine pH to broader manifestations of kidney disease in gout are still poorly understood.


Behavioral Responses and Expression of Nociceptin/Orphanin FQ and Its Receptor (N/OFQ-NOP System) during Experimental Tooth Movement in Rats.

  • Zhengyu Liao‎ et al.
  • Pain research & management‎
  • 2021‎

To determine behavioral testing after experimental tooth movement in rats and to explore the role of nociceptin/orphanin FQ and its receptor (the N/OFQ-NOP system) in pain induced by experimental tooth movement.


Profiling of serum oxylipins identifies distinct spectrums and potential biomarkers in young people with very early onset gout.

  • Can Wang‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2023‎

Oxylipins modulate inflammation via complex pathways. The oxylipin profile in gout remains unexplored. In this study, we systemically profiled oxylipins in young men and identified new oxylipin biomarkers for clinical use in differentiating gout from hyperuricaemia.


Multiplex PCR methods for detection of several viruses associated with canine respiratory and enteric diseases.

  • Xiangqi Hao‎ et al.
  • PloS one‎
  • 2019‎

Viral respiratory and intestinal infections are the most common causes of canine viral illness. Infection with multiple pathogens occurs in many cases. Rapid diagnosis of these multiple infections is important for providing timely and effective treatment. To improve diagnosis, in this study, two new multiplex polymerase chain reactions (mPCRs) were developed for simultaneous detection of canine respiratory viruses (CRV) and canine enteric viruses (CEV) using two separate primer mixes. The viruses included canine adenovirus type 2 (CAV-2), canine distemper virus (CDV), canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine circovirus (CanineCV), canine coronavirus (CCoV) and canine parvovirus (CPV). The sensitivity of the mPCR results showed that the detection limit of both mPCR methods was 1×104 viral copies. Twenty nasal swabs (NS) and 20 anal swabs (AS) collected from dogs with symptoms of respiratory disease or enteric disease were evaluated using the novel mPCR methods as a clinical test. The mPCR protocols, when applied to these respiratory specimens and intestinal samples, could detect 7 viruses simultaneously, allowing rapid investigation of CRV (CAV-2, CDV, CIV and CPIV) and CEV (CAV-2, CanineCV, CCoV and CPV) status and prompt evaluation of coinfection. Our study provides an effective and accurate tool for rapid differential diagnosis and epidemiological surveillance in dogs.


A cross-sectional study on uric acid levels among Chinese adolescents.

  • Jie Lu‎ et al.
  • Pediatric nephrology (Berlin, Germany)‎
  • 2020‎

The prevalence of hyperuricemia is increasing in adults, while the prevalence among adolescents is seldom reported.


Efficacy and safety of tart cherry supplementary citrate mixture on gout patients: a prospective, randomized, controlled study.

  • Can Wang‎ et al.
  • Arthritis research & therapy‎
  • 2023‎

Low urine pH, which may be mediated by metabolic syndrome (MetS), is common in gout. Tart cherries are shown to improve MetS symptoms and possess anti-inflammatory properties. However, the efficacy of tart cherry supplements on urine pH has yet to be studied.


The Effect of Decrease in Serum Urate for the Risk of Gout Flares During Urate-Lowering Therapy Initiation Among Chinese Male Gout Patients: A Prospective Cohort Study.

  • Lei Pang‎ et al.
  • Journal of inflammation research‎
  • 2023‎

Higher baseline serum urate or higher initial urate-lowering medication dose increased risk of gout flares during urate-lowering therapy (ULT) initiation. The decrease in serum urate may play a crucial role in this process. Therefore, we aim to explore the relationship between decrease in serum urate and the risk of gout flares during ULT initiation.


Prevalence of nine genetic defects in Chinese Holstein cattle.

  • Md Yousuf Ali Khan‎ et al.
  • Veterinary medicine and science‎
  • 2021‎

Worldwide use of elite sires has caused inbreeding accumulation and high frequencies of genetic defects in dairy cattle populations. In recent years, several genetic defect genes or haplotypes have been identified in Holstein cattle. A rapid and reliable microfluidic chip with Kompetitive allele-specific PCR (KASP) assay was developed in our previous study for the detection of heterozygotes at eight genetic defect loci of bovine leukocyte adhesion deficiency (BLAD), Brachyspina syndrome (BS), complex vertebral malformation (CVM), Holstein haplotype 1 (HH1), Holstein haplotype 3 (HH3), Holstein haplotype 4 (HH4), Holstein haplotype 5 (HH5) and haplotype for cholesterol deficiency (HCD). This study aimed to extend that assay to include a newly identified genetic defect of Holstein haplotype 6 (HH6) and to estimate the frequencies of carriers for each of the nine genetic defects in six Chinese Holstein herds. Of the 1633 cows, carrier frequencies of the genetic defects were 6.92%, 5.76%, 4.46%, 4.30%, 3.62%, 2.94%, 1.86% and 0.37% for HH1, HH3, CVM, HH5, HCD, BS, HH6 and BLAD, respectively. No carrier was found for HH4. Notably, 27.43% of cows carried at least one genetic defect, while 2.27% and 0.12% of cows carried double and triple genetic defect alleles, respectively. The existence of genetic defects calls for routine molecular testing and effective management of genetic defects by avoiding carrier-to-carrier mating in production herds and eliminating or at least reducing the frequency of the defective alleles through marker-assisted selection in breeding herds.


Effects of fenofibrate therapy on renal function in primary gout patients.

  • Xinde Li‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2021‎

To investigate the incidence and potential risk factors for development of fenofibrate-associated nephrotoxicity in gout patients.


Reporting quality of clinical practice guidelines regarding gout and hyperuricemia according to the RIGHT checklist: systematic review.

  • Can Wang‎ et al.
  • Systematic reviews‎
  • 2021‎

The Reporting Items for Practice Guidelines in Healthcare (RIGHT) checklist was used to assess the reporting quality of 2009-2019 clinical practice guidelines (CPGs) regarding gout and hyperuricemia, aimed to improve the reporting quality of future guidelines.


A machine learning-assisted model for renal urate underexcretion with genetic and clinical variables among Chinese men with gout.

  • Mingshu Sun‎ et al.
  • Arthritis research & therapy‎
  • 2022‎

The objective of this study was to develop and validate a prediction model for renal urate underexcretion (RUE) in male gout patients.


Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic β-Cell Death in Uricase-Deficient Male Mice.

  • Jie Lu‎ et al.
  • Diabetes‎
  • 2020‎

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering therapy (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal-associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.


Associations of micronutrient dietary patterns with sarcopenia among US adults: a population-based study.

  • Yining Liu‎ et al.
  • Frontiers in nutrition‎
  • 2024‎

Current epidemiological evidence points to an association between micronutrient (MN) intake and sarcopenia, but studies have focused on single MN, and no combined effects on MNs have been reported. The aim of this study was to investigate the relationship between different MN intake patterns and sarcopenia and skeletal muscle mass.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: