Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis.

  • Sighild Lemarchant‎ et al.
  • Molecular neurodegeneration‎
  • 2016‎

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteoglycanases are specialized in the degradation of chondroitin sulfate proteoglycans and participate in mechanisms mediating neuroplasticity. Despite the beneficial effect of ADAMTS-4 on neurorepair after spinal cord injury, the functions of ADAMTS proteoglycanases in other CNS disease states have not been studied. Therefore, we investigated the expression, effects and associated mechanisms of ADAMTS-4 during amyotrophic lateral sclerosis (ALS) in the SOD1(G93A) mouse model.


Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis.

  • Paula Korhonen‎ et al.
  • IBRO reports‎
  • 2019‎

Inflammation is a prominent feature of the neuropathology of amyotrophic lateral sclerosis (ALS). Emerging evidence suggests that inflammatory cascades contributing to the disease progression are not restricted to the central nervous system (CNS) but also occur peripherally. Indeed, alterations in T cell responses and their secreted cytokines have been detected in ALS patients and in animal models of ALS. One key cytokine responsible for the shift in T cell responses is interleukin-33 (IL-33), which stimulates innate type 2 immune cells to produce a large amount of Th2 cytokines that are possibly beneficial in the recovery processes of CNS injuries. Since the levels of IL-33 have been shown to be decreased in patients affected with ALS, we sought to determine whether a long-term recombinant IL-33 treatment of a transgenic mouse model of ALS expressing G93A-superoxide dismutase 1 (SOD1-G93A) alters the disease progression and ameliorates the ALS-like disease pathology. SOD1-G93A mice were treated with intraperitoneal injections of IL-33 and effects on disease onset and inflammatory status were determined. Spinal cord (SC) neurons, astrocytes and T-cells were exposed to IL-33 to evaluate the cell specific responses to IL-33. Treatment of SOD1-G93A mice with IL-33 delayed the disease onset in female mice, decreased the proportion of CD4+ and CD8 + T cell populations in the spleen and lymph nodes, and alleviated astrocytic activation in the ventral horn of the lumbar SC. Male SOD1-G93A mice were unresponsive to the treatment. In vitro studies showed that IL-33 is most likely not acting directly on neurons and astrocytes, but rather conveying its effects through peripheral T-cells. Our results suggest that strategies directed to the peripheral immune system may have therapeutic potential in ALS. The effect of gender dimorphisms to the treatment efficacy needs to be taken into consideration when designing new therapeutic strategies for CNS diseases.


Generation of an induced pluripotent stem cell line (CSC-41) from a Parkinson's disease patient carrying a p.G2019S mutation in the LRRK2 gene.

  • Ana Marote‎ et al.
  • Stem cell research‎
  • 2018‎

The leucine-rich repeat kinase 2 (LRRK2) p.G2019S mutation is the most common genetic cause of Parkinson's disease (PD). An induced pluripotent stem cell (iPSC) line CSC-41 was generated from a 75-year old patient diagnosed with PD caused by a p.G2019S mutation in LRRK2. Skin fibroblasts were reprogrammed using a non-integrating Sendai virus-based technology to deliver OCT3/4, SOX2, c-MYC and KLF4 transcription factors. The generated iPSC line exhibits expression of common pluripotency markers, differentiates into the three germ layers and has a normal karyotype. The iPSC line can be used to explore the association between LRRK2 mutation and PD.


Generation of a human induced pluripotent stem cell line (CSC-40) from a Parkinson's disease patient with a PINK1 p.Q456X mutation.

  • Kaspar Russ‎ et al.
  • Stem cell research‎
  • 2018‎

Parkinson's disease (PD) is a neurodegenerative disease with unknown etiology. Here we show the generation of an induced pluripotent stem cell (iPSC) line, named CSC-40, from dermal fibroblasts obtained from a 59-year-old male patient with a homozygous p.Q456X mutation in the PTEN-induced putative kinase 1 (PINK/PARK6) gene and a confirmed diagnosis of PD, which could be used to model familial PD. A non-integrating Sendai virus-based delivery of the reprogramming factors OCT3/4, SOX2, c-MYC and KLF4 was employed. The CSC-40 cell line showed normal karyotyping and fingerprinting following transduction as well as sustained expression of several pluripotency markers and the ability to differentiate into all three germ layers.


Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer's disease pathogenesis.

  • Yuriy Pomeshchik‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.


Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

  • Yuriy Pomeshchik‎ et al.
  • Brain, behavior, and immunity‎
  • 2015‎

Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI.


Generation of a human induced pluripotent stem cell line (CSC-42) from a patient with sporadic form of Parkinson's disease.

  • Ekaterina Savchenko‎ et al.
  • Stem cell research‎
  • 2018‎

Skin fibroblasts were collected from a 44-year-old patient with sporadic case of Parkinson's disease (PD). The non-integrating Sendai virus vector encoding OCT3/4, SOX2, c-MYC and KLF4 was used to reprogram fibroblasts into induced pluripotent stem cells (iPSCs). Generated iPSCs had normal karyotypes, expressed common stem cell markers, and were capable of differentiating into all three germ layers. Generated line could be used for PD modeling to understand the mechanisms that influence the disorder.


Generation of an integration-free induced pluripotent stem cell line (CSC-43) from a patient with sporadic Parkinson's disease.

  • Ana Marote‎ et al.
  • Stem cell research‎
  • 2018‎

An induced pluripotent stem cell (iPSC) line was generated from a 36-year-old patient with sporadic Parkinson's disease (PD). Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line (CSC-43) exhibits expression of common pluripotency markers, in vitro differentiation into three germ layers and normal karyotype. This iPSC line can be used to study the mechanisms underlying the development of PD.


An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo.

  • Meike Hedwig Keuters‎ et al.
  • Scientific reports‎
  • 2021‎

Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.


Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C>T and EX6 del) in the PARK2 gene.

  • Ana Marote‎ et al.
  • Stem cell research‎
  • 2018‎

Mutations in the PARK2 gene, which encodes PARKIN, are the most frequent cause of autosomal recessive Parkinson's disease (PD). We report the generation of an induced pluripotent stem cell (iPSC) line from a 78-year-old patient carrying a compound heterozygous mutation (c.823C>T and EX6del) in the PARK2 gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated cell line CSC-44 exhibits expression of common pluripotency markers, in vitro differentiation into the three germ layers and normal karyotype. This iPSC line can be used to explore the association between PARK2 mutations and PD.


Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties.

  • Carla Azevedo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SignificanceOur results demonstrate the existence of early cellular pathways and network alterations in oligodendrocytes in the alpha-synucleinopathies Parkinson's disease and multiple system atrophy. They further reveal the involvement of an immune component triggered by alpha-synuclein protein, as well as a connection between (epi)genetic changes and immune reactivity in multiple system atrophy. The knowledge generated in this study could be used to devise novel therapeutic approaches to treat synucleinopathies.


Generation of an induced pluripotent stem cell line (CSC-46) from a patient with Parkinson's disease carrying a novel p.R301C mutation in the GBA gene.

  • Nadja Gustavsson‎ et al.
  • Stem cell research‎
  • 2019‎

Mutations in the glucocerebrosidase (GBA) gene have been associated with the development of Parkinson's disease (PD). An induced pluripotent stem cell (iPSC) line was generated from a 60-year old patient diagnosed with PD and carrying a new mutation variant p.R301C in GBA. Using non-integrating Sendai virus-based technology, we utilized OCT3/4, SOX2, c-MYC and KLF4 transcription factors to reprogram skin fibroblasts into iPSCs. The generated iPSC line retained the mutation, displayed expression of common pluripotency markers, differentiated into the three germ layers, and exhibited normal karyotype. The iPSC line can be further used for studying PD pathogenesis.


Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease.

  • Lakshman Puli‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural anti-amyloid beta antibodies and anti-inflammatory effects, hIVIG is deemed to mediate beneficial effects to patients of Alzheimer's disease (AD). Here, we set out to explore the effects of hIVIG in a mouse model of AD.


Generation of an induced pluripotent stem cell line (CSC-32) from a patient with Parkinson's disease carrying a heterozygous variation p.A53T in the SNCA gene.

  • Carla Azevedo‎ et al.
  • Stem cell research‎
  • 2020‎

Here, we describe the generation of an induced pluripotent stem cell (iPSC) line, from a male patient diagnosed with Parkinson's disease (PD). The patient carries a heterozygous variation p.A53T in the SNCA gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated iPSC line (CSC-32) preserved the mutation, displayed expression of common pluripotency markers, differentiated into derivatives of the three germ layers, and exhibited a normal karyotype. The clone CSC-32B is presented thereafter; it can be used to study the mechanisms underlying PD pathogenesis.


Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies.

  • Yuriy Pomeshchik‎ et al.
  • Stem cell reports‎
  • 2020‎

The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aβ42/Aβ40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.


TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.

  • Kaspar Russ‎ et al.
  • Cell reports‎
  • 2021‎

Here, we examine the cellular changes triggered by tumor necrosis factor alpha (TNF-α) and different alpha-synuclein (αSYN) species in astrocytes derived from induced pluripotent stem cells. Human astrocytes treated with TNF-α display a strong reactive pro-inflammatory phenotype with upregulation of pro-inflammatory gene networks, activation of the nuclear factor κB (NF-κB) pathway, and release of pro-inflammatory cytokines, whereas those treated with high-molecular-weight αSYN fibrils acquire a reactive antigen (cross)-presenting phenotype with upregulation of major histocompatibility complex (MHC) genes and increased human leukocyte antigen (HLA) molecules at the cell surface. Surprisingly, the cell surface location of MHC proteins is abrogated by larger F110 fibrillar polymorphs, despite the upregulation of MHC genes. Interestingly, TNF-α and αSYN fibrils compete to drive the astrocyte immune reactive response. The astrocyte immune responses are accompanied by an impaired mitochondrial respiration, which is exacerbated in Parkinson's disease (PD) astrocytes. Our data provide evidence for astrocytic involvement in PD pathogenesis and reveal their complex immune reactive responses to exogenous stressors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: