Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 101 papers

Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue.

  • Wenxin Song‎ et al.
  • PLoS biology‎
  • 2019‎

Beiging of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of metabolic diseases through norepinephrine (NE)-mediated signaling pathways. Although previous studies report NE clearance mechanisms via SLC6A2 on sympathetic neurons or proinflammatory macrophages in adipose tissues (ATs), the low catecholamine clearance capacity of SLC6A2 may limit the cleaning efficiency. Here, we report that mouse organic cation transporter 3 (Oct3; Slc22a3) is highly expressed in WAT and displays the greatest uptake rate of NE as a selective non-neural route of NE clearance in white adipocytes, which differs from other known routes such as adjacent neurons or macrophages. We further show that adipocytes express high levels of NE degradation enzymes Maoa, Maob, and Comt, providing the molecular basis on NE clearance by adipocytes together with its reuptake transporter Oct3. Under NE administration, ablation of Oct3 induces higher body temperature, thermogenesis, and lipolysis compared with littermate controls. After prolonged cold challenge, inguinal WAT (ingWAT) in adipose-specific Oct3-deficient mice shows much stronger browning characteristics and significantly elevated expression of thermogenic and mitochondrial biogenesis genes than in littermate controls, and this response involves enhanced β-adrenergic receptor (β-AR)/protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (Creb) pathway activation. Glycolytic genes are reprogrammed to significantly higher levels to compensate for the loss of ATP production in adipose-specific Oct3 knockout (KO) mice, indicating the fundamental role of glucose metabolism during beiging. Inhibition of β-AR largely abolishes the higher lipolytic and thermogenic activities in Oct3-deficient ingWAT, indicating the NE overload in the vicinity of adipocytes in Oct3 KO adipocytes. Of note, reduced functional alleles in human OCT3 are also identified to be associated with increased basal metabolic rate (BMR). Collectively, our results demonstrate that Oct3 governs β-AR activity as a NE recycling transporter in white adipocytes, offering potential therapeutic applications for metabolic disorders.


Effects of Post-Anthesis Nitrogen Uptake and Translocation on Photosynthetic Production and Rice Yield.

  • Hui Wu‎ et al.
  • Scientific reports‎
  • 2018‎

Post-anthesis nitrogen uptake and translocation play critical roles in photosynthetic assimilation and grain filling. However, their effects on leaf stay-green characteristics, dry matter accumulation, and translocation after anthesis remain unclear. In this study, post-anthesis N uptake and translocation between two different rice genotypes (Yongyou12 and Zhongzheyou1) were compared through soil nitrogen leaching treatments at the meiosis stage (MST) and anthesis stage(AST) respectively, and their effects on leaf stay-green duration, photosynthesis, dry matter accumulation and translocation during ripening and yield formation were estimated. The results showed that the soil nitrate-N and ammonium-N contents in Yongyou12 pots decreased significantly, and post-anthesis N uptake was 2.0-3.4 fold higher in Yongyou12 than in Zhongzheyou1. The activities of N-metabolism enzymes and antioxidant enzymes were higher, and flag-leaf photosynthesis and dry matter accumulation during ripening were greater, in Yongyou12 than in Zhongzheyou1. However, insufficient available soil N led to significant decreases in the activities of N- metabolism enzymes, decreased flag-leaf photosynthesis, increased translocation of dry matter and N pre-anthesis, accelerated leaf senescence, shorter duration of the leaf stay-green period, and decreased dry matter accumulation and grain plumpness. In addition, the effect of N uptake after anthesis on yield is greater for rice genotypes that depend on post-anthesis dry matter accumulation and an expanded sink capacity.


[Expression and bioinformatic analysis of ornithine aminotransferase 
in non-small cell lung cancer].

  • Danfei Zhou‎ et al.
  • Zhongguo fei ai za zhi = Chinese journal of lung cancer‎
  • 2012‎

It has been proven that ornithine aminotransferase (OAT) might play an important role in the oncogenesis and progression of numerous malignant tumors. The aim of this study is to detect the mRNA and protein expression of OAT in non-small cell lung cancer (NSCLC), as well as to analyze the bioinformatic features and binary interactions.


Flank sequences of miR-145/143 and their aberrant expression in vascular disease: mechanism and therapeutic application.

  • Xiaojun Liu‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR-145 and miR-143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier.


Role of metadherin in estrogen-regulated gene expression.

  • Yujun Li‎ et al.
  • International journal of molecular medicine‎
  • 2017‎

The disruption of estrogen signaling is widely associated with the development of breast, endometrial and ovarian cancers. As a multifunctional mediator of carcinogenesis, metadherin (MTDH)/astrocyte elevated gene-1 (AEG-1) overexpression has been associated with numerous types of cancer, with reported roles in tumor initiation, proliferation, invasion, metastasis and chemoresistance. At the molecular level, MTDH has been shown to interact with proteins that drive tumorigenesis, including nuclear factor-κB (NF-κB), promyelocytic leukaemia zinc finger (PLZF), BRCA2- and CDKN1A (p21Cip1/Waf-1/mda-6)-interacting protein α (BCCIPα) and staphylococcal nuclease and tudor domain containing 1 (SND1). Through the analysis of the Cancer Genome Atlas (TCGA) datasets for estrogen receptor (ER)-positive endometrial and breast cancers, we found that over 25% of all gene expression correlated with MTDH. Using Affymetrix microarrays, we characterized the differences in gene expression between estrogen-treated parental and MTDH-deficient endometrial and breast cancer cells. We also explored a possible interaction between MTDH and ER by immunoprecipitation, and found that MTDH and ER associated in both breast and endometrial cancer cells in response to estrogen. Reciprocal co-immunoprecipitation analysis demonstrated that acute estrogen stimulation promoted the interaction of MTDH with ER in the nucleus. These data, to the best of our knowledge, provide the first evidence that MTDH and ERα interact in the nucleus with estrogen treatment to regulate gene expression.


MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction.

  • Jingyuan Li‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Alcohol addiction is a major social and health concern. Here, we determined the expression profile of microRNAs (miRNAs) in the nucleus accumbens (NAc) of rats treated with alcohol. The results suggest that multiple miRNAs were aberrantly expressed in rat NAc after alcohol injection. Among them, miR-382 was down-regulated in alcohol-treated rats. In both cultured neuronal cells in vitro and in the NAc in vivo, we identified that the dopamine receptor D1 (Drd1) is a direct target gene of miR-382. Via this target gene, miR-382 strongly modulated the expression of DeltaFosB. Moreover, overexpression of miR-382 significantly attenuated alcohol-induced up-regulation of DRD1 and DeltaFosB, decreased voluntary intake of and preference for alcohol and inhibited the DRD1-induced action potential responses. The results indicated that miRNAs are involved in and may represent novel therapeutic targets for alcoholism.


MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4.

  • Yunhui Cheng‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2009‎

Reactive oxygen species (ROS)-induced cardiac cell injury via expression changes of multiple genes plays a critical role in the pathogenesis of numerous heart diseases. MicroRNAs (miRNAs) comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate about 30% of the genes in a cell via degradation or translational inhibition of their target mRNAs. Currently, the effects of ROS on miRNA expression and the roles of miRNAs in ROS-mediated injury on cardiac myocytes are uncertain. Using quantitative real-time RT-PCR (qRT-PCR), we demonstrated that microRNA-21 (miR-21) was upregulated in cardiac myocytes after treatment with hydrogen peroxide (H(2)O(2)). To determine the potential roles of miRNAs in H(2)O(2)-mediated gene regulation and cellular injury, miR-21 expression was downregulated by miR-21 inhibitor and upregulated by pre-miR-21. H(2)O(2)-induced cardiac cell death and apoptosis were increased by miR-21 inhibitor and was decreased by pre-miR-21. Programmed cell death 4 (PDCD4) that was regulated by miR-21 and was a direct target of miR-21 in cardiac myocytes. Pre-miR-21-mediated protective effect on cardiac myocyte injury was inhibited in H(2)O(2)-treated cardiac cells via adenovirus-mediated overexpression of PDCD4 without miR-21 binding site. Moreover, Activator protein 1 (AP-1) was a downstream signaling molecule of PDCD4 that was involved in miR-21-mediated effect on cardiac myocytes. The results suggest that miR-21 is sensitive to H(2)O(2) stimulation. miR-21 participates in H(2)O(2)-mediated gene regulation and functional modulation in cardiac myocytes. miR-21 might play an essential role in heart diseases related to ROS such as cardiac hypertrophy, heart failure, myocardial infarction, and myocardial ischemia/reperfusion injury.


Improvement Activity of 1-Deoxynojirimycin in the Growth of Dairy Goat Primary Mammary Epithelial Cell through Upregulating LEF-1 Expression.

  • Shengyue Ji‎ et al.
  • BioMed research international‎
  • 2018‎

LEF-1/wnt10b is one of the most important signaling pathways regulating mammary gland growth and development and is also a potential target for molecular breeding. In this work, 1-deoxynojirimycin (DNJ), a natural alkaloid extracted from plant mulberry or microorganism, was found to have a positive activity in primary breast epithelial cell growth of dairy goats. The findings showed that, compared to the control, 6 μM DNJ in the DMEM/F12 medium in vitro greatly improved the density of dairy goat breast epithelial cell and significantly increased the LEF-1 mRNA level (P < 0.01) and thus enhanced cell growth. In addition, DNJ displayed a similar function in alleviating the growth suppression of epithelial cell and the decrease of LEF-1 mRNA level resulting from lentiviral-mediated LEF-1 knockdown. Simultaneously, no significant change of the mRNA levels of IGF-1 and Fgf10, the other two key regulators in mammary gland growth and development, could be detected. Furthermore, the mammary duct of DNJ-fed mouse illustrated a better development accompanied with a higher LET-1 mRNA level than that of the control. In conclusion, DNJ could improve breast epithelial cell growth through upregulating LEF-1 expression, which supplied a new means in studying mammary gland growth and development.


Binding interactions of epididymal protease inhibitor and semenogelin-1: a homology modeling, docking and molecular dynamics simulation study.

  • Changyu Shan‎ et al.
  • PeerJ‎
  • 2019‎

Epididymal protease inhibitor (EPPIN) that is located on the sperm surface and specific to the male reproductive system is a non-hormonal contraceptive target, since the binding of EPPIN with the seminal plasma protein semenogelin-1 (SEMG1) causes a loss of sperm function. Here, we investigated the binding interactions between EPPIN and SEMG1 by homology modeling, docking and molecular dynamics simulation. Since no crystal structure was reported for EPPIN, its 3D structure was constructed by homology modeling and refined by dynamics simulation, illustrating the C-terminus domain of EPPIN could bind with its N-terminus domain through the residues 30-32 and 113-116. The binding interaction of SEMG110-8 peptide and EPPIN was investigated by Z-DOCK and dynamics simulation. After evaluating the models according to the calculated binding free energies, we demonstrated that C-terminus domain of EPPIN was important for the binding of SEMG1 via residues Tyr107, Gly112, Asn116, Gln118 and Asn122, while residue Arg32 in N-terminus domain also had contribution for their binding interaction. Additionally, the binding pocket of EPPIN was defined according to these key residues and verified by molecular docking with reported inhibitor EP055, suggesting that the pocket formed by Arg32, Asn114, Asn116, Phe117 and Asn122 could be important for the design of new ligands. This study might be helpful for the understanding of biological function of EPPIN and would encourage the discovery of non-hormonal contraceptive leads/drugs in the future.


Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm.

  • Qiuping Zhang‎ et al.
  • Horticulture research‎
  • 2021‎

The genetic diversity of germplasm is critical for exploring genetic and phenotypic resources and has important implications for crop-breeding sustainability and improvement. However, little is known about the factors that shape and maintain genetic diversity. Here, we assembled a high-quality chromosome-level reference of the Chinese common apricot 'Yinxiangbai', and we resequenced 180 apricot accessions that cover four major ecogeographical groups in China and other accessions from occidental countries. We concluded that Chinese-cultivated common apricot germplasms possessed much higher genetic diversity than those cultivated in Western countries. We also detected seven migration events among different apricot groups, where 27% of the genome was identified as being introgressed. Remarkably, we demonstrated that these introgressed regions drove the current high level of germplasm diversity in Chinese-cultivated common apricots by introducing different genes related to distinct phenotypes from different cultivated groups. Our results highlight the consideration that introgressed regions may provide an important reservoir of genetic resources that can be used to sustain modern breeding programs.


Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness.

  • Yize Li‎ et al.
  • Cancer cell‎
  • 2023‎

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


The SARS-CoV-2 Spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice.

  • Xiaoling Cao‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

As the pandemic evolves, post-acute sequelae of CoV-2 (PACS) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PACS-related cardiomyopathy.


Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance.

  • Yaliang Wang‎ et al.
  • PeerJ‎
  • 2019‎

Heat stress inhibits rice panicle development and reduces the spikelet number per panicle. This study investigated the mechanism involved in heat-induced damage to panicle development and spikelet formation in rice cultivars that differ in heat tolerance. Transcriptome data from developing panicles grown at 40 °C or 32 °C were compared for two rice cultivars: heat-tolerant Huanghuazhan and heat-susceptible IR36. Of the differentially expressed genes (DEGs), 4,070 heat stress-responsive genes were identified, including 1,688 heat-resistant-cultivar-related genes (RHR), 707 heat-susceptible-cultivar-related genes (SHR), and 1,675 common heat stress-responsive genes (CHR). A Gene Ontology (GO) analysis showed that the DEGs in the RHR category were significantly enriched in 54 gene ontology terms, some of which improved heat tolerance, including those in the WRKY, HD-ZIP, ERF, and MADS transcription factor families. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs in the RHR and SHR categories were enriched in 15 and 11 significant metabolic pathways, respectively. Improved signal transduction capabilities of endogenous hormones under high temperature seemed to promote heat tolerance, while impaired starch and sucrose metabolism under high temperature might have inhibited young panicle development. Our transcriptome analysis provides insights into the different molecular mechanisms of heat stress tolerance in developing rice.


NF155-overexpression promotes remyelination and functional restoration in a hypoxic-ischemic mixed neonatal rat forebrain cell culture system.

  • Bin Hu‎ et al.
  • Neuroscience letters‎
  • 2020‎

White matter injury caused by perinatal hypoxia-ischemia is characterized by myelination disorders; however, its pathophysiological mechanisms are not fully elucidated. The neurofascin 155 (NF155) protein, expressed in oligodendrocytes, is critical for myelination. Previous findings suggest that NF155 participates in the pathological mechanisms of developmental myelination disorders in hypoxic-ischemic cerebral white matter lesions, and it might regulate cytoskeletal changes. Therefore, we hypothesized that increased NF155 expression during the early stages of hypoxic oligodendrocyte injury helps normalize myelin sheath development and consequently improves neural function by repairing paranodal structures of myelin sheaths and regulating cytoskeletal changes. To test this hypothesis, we established a hypoxic-ischemic, mixed neonatal rat forebrain cell culture model. When NF155 expression was upregulated, synergistic effects occurred between this protein and the paranodal proteins CASPR and contactin. In addition, the expression of Rho GTPase family proteins that regulate key cytoskeletal pathways, myelin sheath structures, and functions were restored, and axonal structures acquired a clear and transparent appearance. These results suggest that NF155 may enable myelin sheath repair by repairing paranodal region structures and regulating oligodendrocyte cytoskeletal mechanisms. Overall, the present study provides new insights into the pathogenesis of hypoxic-ischemic cerebral white matter lesions.


Interferon-alpha responsible EPN3 regulates hepatitis B virus replication.

  • Xueqian Li‎ et al.
  • Frontiers in medicine‎
  • 2022‎

Hepatitis B virus (HBV) infection remains a major health problem worldwide, and the current antiviral therapy, including nucleoside analogs, cannot achieve life-long cure, and clarification of antiviral host immunity is necessary for eradication. Here, we found that a clathrin-binding membrane protein epsin3 (EPN3) negatively regulates the expression of HBV RNA. EPN3 expression was induced by transfection of an HBV replicon plasmid, and reduced HBV-RNA level in hepatic cell lines and murine livers hydrodynamically injected with the HBV replicon plasmid. Viral RNA reduction by EPN3 was dependent on transcription, and independent from epsilon structure of viral RNA. Viral RNA reduction by overexpression of p53 or IFN-α treatment, was attenuated by knockdown of EPN3, suggesting its role downstream of IFN-α and p53. Taken together, this study demonstrates the anti-HBV role of EPN3. The mechanism how it decreases HBV transcription is discussed.


Pathogenic ATM and BAP1 germline mutations in a case of early-onset, familial sarcomatoid renal cancer.

  • Hannah N Bell‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2022‎

Metastatic renal cell carcinoma (RCC) remains an incurable malignancy, despite recent advances in systemic therapies. Genetic syndromes associated with kidney cancer account for only 5%-8% of all diagnosed kidney malignancies, and genetic predispositions to kidney cancer predisposition are still being studied. Genomic testing for kidney cancer is useful for disease molecular subtyping but provides minimal therapeutic information. Understanding how aberrations drive RCC development and how their contextual influences, such as chromosome loss, genome instability, and DNA methylation changes, may alter therapeutic response is of importance. We report the case of a 36-yr-old female with aggressive, metastatic RCC and a significant family history of cancer, including RCC. This patient harbors a novel, pathogenic, germline ATM mutation along with a rare germline variant of unknown significance in the BAP1 gene. In addition, somatic loss of heterozygosity (LOH) in BAP1 and ATM genes, somatic mutation and LOH in the VHL gene, copy losses in Chromosomes 9p and 14, and genome instability are also noted in the tumor, potentially dictating this patient's aggressive clinical course. Further investigation is warranted to evaluate the association of ATM and BAP1 germline mutations with increased risk of RCC and if these mutations should lead to enhanced and early screening.


Vegetarian diet duration's influence on women's gut environment.

  • Xinqi Deng‎ et al.
  • Genes & nutrition‎
  • 2021‎

Nutrient composition of vegetarian diets is greatly different from that of omnivore diets, which may fundamentally influence the gut microbiota and fecal metabolites. The interactions between diet pattern and gut environment need further illustration. This study aims to compare the difference in the gut microbiota and fecal metabolites between vegetarian and omnivore female adults and explore associations between dietary choices/duration and gut environment changes.


PPARγ attenuates hepatic inflammation and oxidative stress of non‑alcoholic steatohepatitis via modulating the miR‑21‑5p/SFRP5 pathway.

  • Xiying Zhang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Inflammation and oxidative stress are key steps in the progression of non‑alcoholic steatohepatitis (NASH). Intervention in these two processes will therefore benefit NASH treatment. Peroxisome proliferator‑activated receptor γ (PPARγ), as a multiple functional transcription factor, has been reported to be involved in the prevention of NASH progression. However, the mechanism by which PPARγ prevents NASH remains to be elucidated. The present study demonstrated that the level of PPARγ was inversely correlated with that of microRNA (miRNA/miRs)‑21‑5p in both mice and humans with NASH. Activation of PPARγ inhibited lipid droplet accumulation, hepatic inflammation and oxidative stress by downregulating miR‑21‑5p in an in vitro model. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that PPARγ suppressed transcriptional activity of miR‑21‑5p and bound to miR‑21‑5p promoter region. Furthermore, PPARγ downregulated miR‑21‑5p while miR‑21‑5p upregulated secreted frizzled‑related protein 5 (SFRP5) by targeting the 3'‑UTR of its mRNA. In vivo experiments revealed that PPARγ repressed inflammation and oxidative stress and miR‑21‑5p expression while increased SFRP5 level in a NASH mouse model. In summary, PPARγ attenuates inflammation and oxidative stress in NASH by modulating the miR‑21‑5p/SFRP5 pathway, thus holding promise of a new target for NASH treatment.


Genomics driven precision oncology in advanced biliary tract cancer improves survival.

  • Chandan Kumar-Sinha‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2023‎

Biliary tract cancers (BTCs) including intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder cancer, are rare but aggressive malignancies with few effective standard of care therapies.


Hybrid Oncocytic Tumors (HOTs) in Birt-Hogg-Dubé Syndrome Patients-A Tale of Two Cities: Sequencing Analysis Reveals Dual Lineage Markers Capturing the 2 Cellular Populations of HOT.

  • Xiao-Ming Wang‎ et al.
  • The American journal of surgical pathology‎
  • 2024‎

Birt-Hogg-Dubé (BHD) syndrome is associated with an increased risk of multifocal renal tumors, including hybrid oncocytic tumor (HOT) and chromophobe renal cell carcinoma (chRCC). HOT exhibits heterogenous histologic features overlapping with chRCC and benign renal oncocytoma, posing challenges in diagnosis of HOT and renal tumor entities resembling HOT. In this study, we performed integrative analysis of bulk and single-cell RNA sequencing data from renal tumors and normal kidney tissues, and nominated candidate biomarkers of HOT, L1CAM, and LINC01187 , which are also lineage-specific markers labeling the principal cell and intercalated cell lineages of the distal nephron, respectively. Our findings indicate the principal cell lineage marker L1CAM and intercalated cell lineage marker LINC01187 to be expressed mutually exclusively in a unique checkered pattern in BHD-associated HOTs, and these 2 lineage markers collectively capture the 2 distinct tumor epithelial populations seen to co-exist morphologically in HOTs. We further confirmed that the unique checkered expression pattern of L1CAM and LINC01187 distinguished HOT from chRCC, renal oncocytoma, and other major and rare renal cell carcinoma subtypes. We also characterized the histopathologic features and immunophenotypic features of oncocytosis in the background kidney of patients with BHD, as well as the intertumor and intratumor heterogeneity seen within HOT. We suggest that L1CAM and LINC01187 can serve as stand-alone diagnostic markers or as a panel for the diagnosis of HOT. These lineage markers will inform future studies on the evolution and interaction between the 2 transcriptionally distinct tumor epithelial populations in such tumors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: