Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 122 papers

Impact of race and tumor subtype on second malignancy risk in women with breast cancer.

  • Nicholas Diab‎ et al.
  • SpringerPlus‎
  • 2016‎

Women with breast cancer are at increased risk of second malignancy (SM). However, the impact of race and the hormone receptor (HR) status of the primary breast tumor on risk of SM are not known. The purpose of this study is to analyze the incidence of SM in women with a history of breast cancer according to race and HR status.


The Caenorhabditis elegans intermediate-size transcriptome shows high degree of stage-specific expression.

  • Yunfei Wang‎ et al.
  • Nucleic acids research‎
  • 2011‎

Earlier studies have revealed a substantial amount of transcriptional activity occurring outside annotated protein-coding genes of the Caenorhabditis elegans genome. One important fraction of this transcriptional activity relates to intermediate-size (70-500 nt) transcripts (is-ncRNAs) of mostly unknown function. Profiling the expression of this segment of the transcriptome on a tiling array through the C. elegans life cycle identified 5866 hitherto unannotated transcripts. The novel loci were distributed across intronic and intergenic space, with some enrichment toward protein-coding gene termini. The majority of the putative is-ncRNAs showed either stage-specific expression, or distinct developmental variation in their expression levels. More than 200 loci showed male-specific expression, and conserved loci were significantly enriched on the X chromosome, both observations strongly suggesting involvement of is-ncRNAs in sex-specific functions. Half of the novel loci were conserved in other nematodes, and numerous loci showed significant conservational correlations to nearby coding genes. Assuming functional roles for most of the novel loci, the data imply a nematode is-ncRNA tool kit of considerable size and variety.


Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro.

  • Lilan Chen‎ et al.
  • Journal of ovarian research‎
  • 2014‎

Ovarian carcinoma is one of the most common gynecological cancers with high mortality rates. Numerous evidences demonstrate that cancer cells undergo metabolic abnormality during tumorigenesis in tumor microenvironment and further facilitate tumor progression. Succinate dehydrogenase (SDH or Complex II) is one of the important enzymes in the tricarboxylic acid (TCA) cycle. Succinate dehydrogenase subunit B (SDHB) gene, which encodes one of the four subunits of SDH, has been recognized as a tumor suppressor. However the role of SDHB in ovarian cancer is still unclear.


Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

  • Yunfei Wang‎ et al.
  • Scientific reports‎
  • 2013‎

Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain.


UBE2C induces EMT through Wnt/β‑catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A.

  • Rui Wang‎ et al.
  • International journal of oncology‎
  • 2017‎

The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase‑promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC‑803 and SGC‑7901 gastric cancer cells UBE2C‑deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome‑wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p‑AURKA) via Wnt/β‑catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E‑cadherin was up‑regulated and N-cadherin was downregulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma.


Long Noncoding RNA LINC00673 Is Activated by SP1 and Exerts Oncogenic Properties by Interacting with LSD1 and EZH2 in Gastric Cancer.

  • Mingde Huang‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the biological function of these molecules and the mechanisms responsible for their alteration in gastric cancer (GC) are not fully understood. In this study, we found that lncRNA LINC00673 is significantly upregulated in gastric cancer. Knockdown of LINC00673 inhibited cell proliferation and invasion and induced cell apoptosis, whereas LINC00673 overexpression had the opposite effect. Online transcription factor binding site prediction analysis showed that there are SP1 binding sites in the LINC00673 promoter region. Next, luciferase reporter and chromatin immunoprecipitation (ChIP) assays provided evidence that SP1 could bind directly to the LINC00673 promoter region and activate its transcription. Moreover, mechanistic investigation showed that CADM4, KLF2, and LATS2 might be the underlying targets of LINC00673 in GC cells, and RNA immunoprecipitation, RNA pull-down, and ChIP assays showed that LINC00673 can interact with EZH2 and LSD1, thereby repressing KLF2 and LATS2 expression. Taken together, these findings show that SP1-activated LINC00673 exerts an oncogenic function that promotes GC development and progression, at least in part, by functioning as a scaffold for LSD1 and EZH2 and repressing KLF2 and LATS2 expression.


Downregulation of miRNA-146a-5p promotes malignant transformation of mesenchymal stromal/stem cells by glioma stem-like cells.

  • Xingliang Dai‎ et al.
  • Aging‎
  • 2020‎

Mesenchymal stromal/stem cells (MSCs) are promising carriers in cell-based therapies against central nervous system diseases, and have been evaluated in various clinical trials in recent years. However, bone marrow-derived MSCs (BMSCs) are reportedly involved in tumorigenesis initiated by glioma stem-like cells (GSCs). We therefore established three different orthotopic models of GSC-MSC interactions in vivo using dual-color fluorescence tracing. Cell sorting and micropipetting techniques were used to obtain highly proliferative MSC monoclones from each model, and these cells were identified as transformed MSC lines 1, 2 and 3. Nineteen miRNAs were upregulated and 24 miRNAs were downregulated in all three transformed MSC lines compared to normal BMSCs. Reduced miR-146a-5p expression in the transformed MSCs was associated with their proliferation, malignant transformation and overexpression of heterogeneous nuclear ribonucleoprotein D. These findings suggest that downregulation of miR-146a-5p leads to overexpression of its target gene, heterogeneous nuclear ribonucleoprotein D, thereby promoting malignant transformation of MSCs during interactions with GSCs. Given the risk that MSCs will undergo malignant transformation in the glioma microenvironment, targeted glioma therapies employing MSCs as therapeutic carriers should be considered cautiously.


Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke.

  • Weili Jin‎ et al.
  • Theranostics‎
  • 2021‎

Ischemic stroke is an acute and severe neurological disease, which leads to disability and death. Immunomodulatory therapies exert multiple remarkable protective effects during ischemic stroke. However, patients suffering from ischemic stroke do not benefit from immunomodulatory therapies due to the presence of the blood-brain barrier (BBB) and their off-target effects. Methods: We presented a delivery strategy to optimize immunomodulatory therapies by facilitating BBB penetration and selectively delivering intravenous immunoglobulin (IVIg) to ischemic regions using 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules, MPC-n(IVIg), synthesized using MPC monomers and ethylene glycol dimethyl acrylate (EGDMA) crosslinker via in situ polymerization. In vitro and in vivo experiments verify the effect and safety of MPC-n(IVIg). Results: MPC-n(IVIg) efficiently crosses the BBB and IVIg selectively accumulates in ischemic areas in a high-affinity choline transporter 1 (ChT1)-overexpression dependent manner via endothelial cells in ischemic areas. Moreover, earlier administration of MPC-n(IVIg) more efficiently deliver IVIg to ischemic areas. Furthermore, the early administration of low-dosage MPC-n(IVIg) decreases neurological deficits and mortality by suppressing stroke-induced inflammation in the middle cerebral artery occlusion model. Conclusion: Our findings indicate a promising strategy to efficiently deliver the therapeutics to the ischemic target brain tissue and lower the effective dose of therapeutic drugs for treating ischemic strokes.


The application of targeted nanopore sequencing for the identification of pathogens and resistance genes in lower respiratory tract infections.

  • Hongying Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Lower respiratory tract infections (LRTIs) are one of the causes of mortality among infectious diseases. Microbial cultures commonly used in clinical practice are time-consuming, have poor sensitivity to unculturable and polymicrobial patterns, and are inadequate to guide timely and accurate antibiotic therapy. We investigated the feasibility of targeted nanopore sequencing (TNPseq) for the identification of pathogen and antimicrobial resistance (AMR) genes across suspected patients with LRTIs. TNPseq is a novel approach, which was improved based on nanopore sequencing for the identification of bacterial and fungal infections of clinical relevance.


Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine.

  • Dapeng Li‎ et al.
  • Nature communications‎
  • 2022‎

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Cathepsin a upregulation in glioma: A potential therapeutic target associated with immune infiltration.

  • Ming Zhang‎ et al.
  • Journal of medical biochemistry‎
  • 2022‎

Glioma is the result of malignant transformation of glial cells in the white matter of the brain or spinal cord and accounts for approximately 80% of all intracranial malignancies. Cathepsin A (CTSA) is highly expressed in a variety of tumor tissues, but its role in glioma is poorly studied. This study analyses the relationship between CTSA, and glioma based on The Cancer Genome Atlas (TCGA).


CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug.

  • Yanping Liang‎ et al.
  • Molecular cancer‎
  • 2022‎

Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive.


LncRNA PRADX-mediated recruitment of PRC2/DDX5 complex suppresses UBXN1 expression and activates NF-κB activity, promoting tumorigenesis.

  • Yansheng Li‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in cancer progression; however, only few have been characterized in detail. The current study aimed to identify a novel cancer driver lncRNA in glioblastoma and colon adenocarcinoma. Methods: We performed whole transcriptome analysis of TCGA pan-cancer datasets to compare the lncRNA expression profiles of tumor and paired normal tissues. In situ hybridization of tissue sections was performed to validate the expression data and determine the localization of lncRNAs that may be linked to glioblastoma and colon adenocarcinoma. Chromatin isolation by RNA purification (ChIRP), chromatin immunoprecipitation (ChIP), and Co-immunoprecipitation (Co-IP) assays were performed to assess the interaction between lncRNA, proteins, and chromatin. The functional significance of the identified lncRNAs was verified in vitro and in vivo by knockdown or exogenous expression experiments. Results: We found a lncRNA ENST00000449248.1 termed PRC2 and DDX5 associated lncRNA (PRADX) that is highly expressed in glioblastoma and colon adenocarcinoma cells and tissues. PRADX, mainly located in the nucleus of tumor cells, could bind to EZH2 protein via the 5' terminal sequence. Moreover, PRADX increased the trimethylation of H3K27 in the UBXN1 gene promoter via PRC2/DDX5 complex recruitment and promoted NF-κB activity through UBXN1 suppression. Knockdown of PRADX significantly inhibited tumor cell viability and clonogenic growth in vitro. In xenograft models, PRADX knockdown suppressed tumor growth and tumorigenesis and prolonged the survival of tumor-bearing mice. Conclusions: PRADX acts as a cancer driver and may serve as a potential therapeutic target for glioblastoma and colon adenocarcinoma.


Precise editing of FGFR3-TACC3 fusion genes with CRISPR-Cas13a in glioblastoma.

  • Ye Wu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

FGFR3-TACC3 (F3-T3) gene fusions are regarded as a "low-hanging fruit" paradigm for precision therapy in human glioblastoma (GBM). Small molecules designed to target the kinase in FGFR currently serve as one form of potential treatment but cause off-target effects and toxicity. Here, CRISPR-Cas13a, which is known to directly suppress gene expression at the transcriptional level and induce a collateral effect in eukaryotes, was leveraged as a possible precision therapy in cancer cells harboring F3-T3 fusion genes. A library consisting of crRNAs targeting the junction site of F3-T3 was designed, and an in silico simulation scheme was created to select the optimal crRNA candidates. An optimal crRNA, crRNA1, showed efficiency and specificity in inducing the collateral effect in only U87 cells expressing F3-T3 (U87-F3-T3). Expression profiles obtained with microarray analysis were consistent with induction of the collateral effect by the CRISPR-Cas13a system. Tumor cell proliferation and colony formation were decreased in U87-F3-T3 cells expressing the Cas13a-based tool, and tumor growth was suppressed in an orthotopic tumor model in mice. These findings demonstrate that the CRISPR-Cas13a system induces the collateral damage effect in cancer cells and provides a viable strategy for precision tumor therapy based on the customized design of a CRISPR-Cas13a-based tool against F3-T3 fusion genes.


Genome-Wide CRISPR-Cas9 Screening Identifies NF-κB/E2F6 Responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma.

  • Kai Huang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2019‎

Amplification of epidermal growth factor receptor (EGFR) and active mutant EGFRvIII occurs frequently in glioblastoma (GBM) and contributes to chemo/radio-resistance in various cancers, especially in GBM. Elucidating the underlying molecular mechanism of temozolomide (TMZ) resistance in GBM could benefit cancer patients. A genome-wide screening under a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library is conducted to identify the genes that confer resistance to TMZ in EGFRvIII-expressing GBM cells. Deep sgRNA sequencing reveals 191 candidate genes that are responsible for TMZ resistance in EGFRvIII-expressing GBM cells. Notably, E2F6 is proven to drive a TMZ resistance, and E2F6 expression is controlled by the EGFRvIII/AKT/NF-κB pathway. Furthermore, E2F6 is shown as a promising therapeutic target for TMZ resistance in orthotopic GBM cell line xenografts and GBM patient-derived xenografts models. After integrating clinical data with paired primary-recurrent RNA sequencing data from 134 GBM patients who received TMZ treatment after surgery, it has been revealed that the E2F6 expression level is a predictive marker for TMZ response. Therefore, the inhibition of E2F6 is a promising strategy to conquer TMZ resistance in GBM.


CRISPR/CAS9-based DNA damage response screens reveal gene-drug interactions.

  • Dan Su‎ et al.
  • DNA repair‎
  • 2020‎

DNA damage response (DDR) is critically important for cell survival, genome maintenance, and its defect has been exploited therapeutically in cancer treatment. Many DDR-targeting agents have been generated and have entered the clinic and/or clinical trials. In order to provide a global and unbiased view of DDR network, we designed a focused CRISPR library targeting 365 DDR genes and performed CRISPR screens on the responses to several DDR inhibitors and DNA-damaging agents in 293A cells. With these screens, we determined responsive pathways enriched under treatment with different types of small-molecule agents. Additionally, we showed that POLE3/4-deficient cells displayed enhanced sensitivity to an ATR inhibitor, a PARP inhibitor, and camptothecin. Moreover, by performing DDR screens in isogenic TP53 wild-type and TP53 knock-out cell lines, our results suggest that the performance of our CRISPR DDR dropout screens is independent of TP53 status. Collectively, our findings indicate that CRISPR DDR screens can be used to identify potential targets of small-molecule drugs and reveal that TP53 status does not affect the outcome of these screens.


Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway.

  • Kang Chen‎ et al.
  • Oncology reports‎
  • 2020‎

Osteosarcoma is one of the most malignant bone tumors, and its major threats are aggressive invasion and early tumor metastasis, which result in a poor prognosis and high mortality. Accumulating evidence indicates that ginsenoside compound K (CK) has a significant antitumor effect, particularly on the inhibition of proliferation and invasion of numerous human tumors. In the present study, it was revealed that CK inhibited the viability and proliferation of osteosarcoma cells. Moreover, it was demonstrated that CK induced apoptosis and inhibited the migration and invasion of osteosarcoma cells via apoptotic staining, Annexin V/PI staining, and Transwell invasion assays. Furthermore, at the molecular level, the present results confirmed that apoptosis and invasion‑related proteins were regulated by CK, which was possibly related to the blockade of the PI3K/mTOR/p70S6K1 signaling pathway. In summary, the present findings indicated that CK inhibited viability and proliferation, induced apoptosis, and inhibited the migration and invasion of osteosarcoma cells through the PI3K/mTOR/p70S6K1 signaling pathway.


RAB11FIP5-Deficient Mice Exhibit Cytokine-Related Transcriptomic Signatures.

  • Dapeng Li‎ et al.
  • ImmunoHorizons‎
  • 2020‎

Rab11 recycling endosomes are involved in immunological synaptic functions, but the roles of Rab11 family-interacting protein 5 (Rab11Fip5), one of the Rab11 effectors, in the immune system remain obscure. Our previous study demonstrated that RAB11FIP5 transcripts are significantly elevated in PBMCs from HIV-1-infected individuals, making broadly HIV-1-neutralizing Abs compared with those without broadly neutralizing Abs; however, the role of Rab11FiP5 in immune functions remains unclear. In this study, a RAB11FIP5 gene knockout (RAB11FIP5 -/-) mouse model was employed to study the role of Rab11Fip5 in immune responses. RAB11FIP5 -/- mice exhibited no perturbation in lymphoid tissue cell subsets, and Rab11Fip5 was not required for serum Ab induction following HIV-1 envelope immunization, Ab transcytosis to mucosal sites, or survival after influenza challenge. However, differences were observed in multiple transcripts, including cytokine genes, in lymphocyte subsets from envelope-immunized RAB11FIP5 -/- versus control mice. These included alterations in several genes in NK cells that mirrored observations in NKs from HIV-infected humans expressing less RAB11FIP5, although Rab11Fip5 was dispensable for NK cell cytolytic activity. Notably, immunized RAB11FIP5 -/- mice had lower IL4 expression in CD4+ T follicular helper cells and showed lower TNF expression in CD8+ T cells. Likewise, TNF-α production by human CD8+ T cells correlated with PBMC RAB11FIP5 expression. These observations in RAB11FIP5 -/- mice suggest a role for Rab11Fip5 in regulating cytokine responses.


Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A.

  • Weili Jin‎ et al.
  • Theranostics‎
  • 2022‎

Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.


LFA-1 activation enriches tumor-specific T cells in a cold tumor model and synergizes with CTLA-4 blockade.

  • Amber Hickman‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

The inability of CD8+ effector T cells (Teffs) to reach tumor cells is an important aspect of tumor resistance to cancer immunotherapy. The recruitment of these cells to the tumor microenvironment (TME) is regulated by integrins, a family of adhesion molecules that are expressed on T cells. Here, we show that 7HP349, a small-molecule activator of lymphocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrin cell-adhesion receptors, facilitated the preferential localization of tumor-specific T cells to the tumor and improved antitumor response. 7HP349 monotherapy had modest effects on anti-programmed death 1-resistant (anti-PD-1-resistant) tumors, whereas combinatorial treatment with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) increased CD8+ Teff intratumoral sequestration and synergized in cooperation with neutrophils in inducing cancer regression. 7HP349 intratumoral CD8+ Teff enrichment activity depended on CXCL12. We analyzed gene expression profiles using RNA from baseline and on treatment tumor samples of 14 melanoma patients. We identified baseline CXCL12 gene expression as possibly improving the likelihood or response to anti-CTLA-4 therapies. Our results provide a proof-of-principle demonstration that LFA-1 activation could convert a T cell-exclusionary TME to a T cell-enriched TME through mechanisms involving cooperation with innate immune cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: