Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Chromium-Containing Traditional Chinese Medicine, Tianmai Xiaoke Tablet, for Newly Diagnosed Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review of Randomized Clinical Trials.

  • Yuming Gu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Chromium-containing traditional Chinese medicine Tianmai Xiaoke tablet (TMXKT) is approved for treating newly diagnosed type 2 diabetes mellitus (T2DM) in China. This review aimed to compile the evidence from randomized clinical trials (RCTs) and quantify the effects of TMXKT on newly diagnosed T2DM.


RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy.

  • Qihao Cui‎ et al.
  • Annals of translational medicine‎
  • 2020‎

Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary.


Overexpression of HDAC6 suppresses tumor cell proliferation and metastasis by inhibition of the canonical Wnt/β-catenin signaling pathway in hepatocellular carcinoma.

  • Zhusheng Yin‎ et al.
  • Oncology letters‎
  • 2018‎

Histone deacetylase 6 (HDAC6), a specific histone deacetylase family member, serves an essential role in the regulation of gene expression, cell cycle progression, autophagy and apoptosis. There are numerous reports on the function of HDAC6 in cancer. However, the specific function of HDAC6 in hepatocellular carcinoma (HCC) has yet to be revealed. In the present study, the expression of HDAC6 was revealed to be downregulated in human HCC cell lines and tissues. The aberrant activation of the canonical Wnt/β-catenin signaling pathway was revealed to be involved in hepatocarcinogenesis and metastasis. It was additionally revealed that the overexpression of HDAC6 decreased the expression of β-catenin protein levels which attenuated the canonical Wnt/β-catenin signaling pathway and suppressed the proliferation of HCC cells. In addition, the upregulation of HDAC6 inhibited the epithelial-to-mesenchymal transition in HCC by increasing the E-cadherin protein levels and decreasing the N-cadherin, vimentin and matrix metalloproteinase-9 protein levels. Furthermore, HDAC6 also exerted an effect on the cell cycle arrest and the induction of apoptosis. These results demonstrated that HDAC6 functioned as a tumor suppressor in HCC by attenuating the activity of the canonical Wnt/β-catenin signaling pathway. Therefore, HDAC6 may serve as a potential therapeutic target for the treatment of HCC.


Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism.

  • Wenchao Dong‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

The current study employed the high-fat diet (HFD) induced murine model to assess the relationship between the effect of Jian Pi Tiao Gan Yin (JPTGY) and the alterations of gut microbiota and fecal metabolism. C57BL/6 mice were used to establish an animal model of obesity via HFD induce. Serum biochemical indicators of lipid metabolism were used to evaluate the pharmacodynamics of JPTGY in obese mice. Bacterial communities and metabolites in the feces specimens from the controls, the Group HFD, and the JPTGY-exposed corpulency group were studied by 16s rDNA genetic sequence in combination with liquid chromatography-mass spectrometry (LC-MS) based untargeted fecal metabolomics techniques. Results revealed that JPTGY significantly decreased the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and elevated high-density lipoprotein cholesterol (HDL-C). Moreover, JPTGY could up-regulate the abundance and diversity of fecal microbiota, which was characterized by the higher phylum of proteobacteria. Consistently, at the genus levels, JPTGY supplementation induced enrichments in Lachnospiraceae NK4A136 group, Oscillibacter, Turicibacter, Clostridium sensu stricto 1, and Intestinimonas, which were intimately related to 14 pivotal fecal metabolins in respond to JPTGY therapy were determined. What is more, metabolomics further analyses show that the therapeutic effect of JPTGY for obesity involves linoleic acid (LA) metabolism paths, alpha-linolenic acid (ALA) metabolism paths, glycerophospholipid metabolism paths, arachidonic acid (AA) metabolism paths, and pyrimidine metabolism paths, which implied the potential mechanism of JPTGY in treating obesity. It was concluded that the linking of corpulency phenotypes with intestinal flora and fecal metabolins unveils the latent causal link of JPTGY in the treatment of hyperlipidemia and obesity.


Downregulation of Frizzled-7 induces the apoptosis of hepatocellular carcinoma cells through inhibition of NF-κB.

  • Yuyang Xue‎ et al.
  • Oncology letters‎
  • 2018‎

The aim of the present study was to investigate the functional role of Frizzled-7 (FZD7) in the apoptosis of hepatoma cells. HepG2 and Huh-7 hepatocellular carcinoma (HCC) cell lines with FZD7 expression were selected for use in the present study. The small hairpin RNA (shRNA) eukaryotic expression vector specific to FZD7 was constructed using gene recombination, and was then transfected into HepG2 and Huh-7 hepatoma cell lines using Lipofectamine 2000 to assess whether the downregulation of FZD7 could affect the proliferative ability of these cells. The results demonstrated that the downregulation of FZD7 expression significantly inhibited the proliferative ability of both cell types through the induction of cell apoptosis, as evidenced using Cell Counting kit-8 assays and flow cytometry. Furthermore, the western blotting results demonstrated that silencing of FZD7 increased the activities of caspase-3 and caspase-9. These increases were also associated with the downregulation of the inhibitor of the apoptosis protein family. Additionally, it was revealed that silencing of FZD7 expression caused the downregulation of apoptosis regulator Bcl-2 and Bcl-XL in HepG2, and Huh-7 cells, as determined through western blot analysis and reverse transcription-quantitative polymerase chain reaction. In the following work, ELISA and western blot analysis revealed that the knockdown of FZD7 inhibited the expression and activities of nuclear factor-κB (NF-κB) p65. Furthermore, it was demonstrated that the expression levels of phosphylated-Smad2/3 were markedly upregulated in sh-FZD7-transfected HepG2 and Huh-7 cells. Then, shRNA eukaryotic expression vector specific to transforming growth factor (TGF)-β receptor II was transfected into both cell lines to investigate the association between the TGF-β/Smad signaling pathway and NF-κB p65. Notably, when the TGF-β/Smad signaling pathway was inhibited, no significant differences in the cell apoptosis rate and NF-κB expression levels were identified in HCC cells. Overall, the results of the present study suggest that the shRNA-mediated knockdown of FZD7 induces apoptosis of hepatoma cell lines through the inhibition of NF-κB. In addition, the TGF-β/Smad signaling pathway appeared to partially participate in the underlying molecular mechanism of FZD7 in HCC.


LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification.

  • Pingfu Hou‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Increasing studies have shown that long noncoding RNAs (lncRNAs) are pivotal regulators participating in carcinogenic progression and tumor metastasis in colorectal cancer (CRC). Although lncRNA long intergenic noncoding RNA 460 (LINC00460) has been reported in CRC, the role and molecular mechanism of LINC00460 in CRC progression still requires exploration.


miR-433 Inhibits Neuronal Growth and Promotes Autophagy in Mouse Hippocampal HT-22 Cell Line.

  • Chunli Xu‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Background: MicroRNAs (miRNAs) have an increasing functional role in some neurodegenerative diseases. Autophagy, the degradation of bulk protein in the cytoplasm, is the quality control function of protein and has a protective role in the survival of neural cells. miR-433 may play a regulatory role in neurodegenerative diseases. Many aspects underlying the mechanism of miR-433 in neural development and neurodegeneration are not clear. Methods: In this study, we established stable cell lines expressing miR-433 by infecting mouse hippocampal neural cell line (HT-22) cells with rLV-miR-433 and the control rLV-miR. Pre-miR-433 expression was analyzed using polymerase chain reaction (PCR). Mature miR-433 expression was measured using quantitative PCR (qPCR). The effect of miR-433 overexpression on cell proliferation was determined using a CCK-8 assay and flow cytometry. RNA interference was used to analyze the function of Cdk12 in mediating the effect of miR-433 on cell proliferation. The effect of miR-433 overexpression on cell apoptosis was determined by flow cytometry. Autophagy-related genes Atg4a, LC3B, and Beclin-1 were determined using qPCR, Western blot, or immunofluorescence. In addition, RNA interference was used to analyze the effect of Atg4a on the induction of autophagy. TargetScan 7.2 was used to predict the target genes of miR-433, and Smad9 was determined using qPCR. Results: Our results indicated that miR-433 increased the expression of Atg4a and induced autophagy by increasing the expression of LC3B-Ⅱ and Beclin-1 in an Atg4a-dependent manner. In addition, miR-433 upregulated the expression of Cdk12 and inhibited cell proliferation in a Cdk12-dependent manner and promoted apoptosis in HT-22 cells under the treatment of 10-hydroxycamptothecin. Conclusion: The results of our study suggest that miR-433 may regulate neuronal growth by promoting autophagy and attenuating cell proliferation. This might be a potential therapeutic intervention in neurodegenerative diseases.


Network pharmacology and molecular docking to explore the mechanism of Sheng Xue Bao mixture against iron deficiency anemia.

  • Yun Wang‎ et al.
  • Medicine‎
  • 2023‎

Based on network pharmacology and molecular docking, we investigated the mechanism of action of Sheng Xue Bao mixture (SXBM) in treating iron deficiency anemia (IDA). We screened the HERB and traditional Chinese medicine systems pharmacology database and analysis platform databases to identify the active ingredients and targets of SXBM. The targets associated with "iron deficiency anemia" were collected from GeneCards, TTD, and OMIM databases. A component-target interaction network was constructed using Cytoscape 3.8.2. The protein-protein interaction network of candidate targets was generated using the STRING database and visualized with Cytoscape 3.8.2 software. Core modules obtained from clustering analysis were subjected to Gene Ontology and Kyoto encyclopedia of genes and genomes enrichment analysis. Finally, molecular docking validation of key targets and active components was performed using Autodock Vina software. A total of 174 active components and 111 genes were identified as potential active components and targets for IDA treatment, including quercetin, kaempferol, luteolin, beta-sitosterol, and other flavonoids as main active components. Gene Ontology enrichment analysis show that interleaved genes are enriched in 2328 biological processes, 71 cellular component expression processes, and 157 molecular function processes. Kyoto encyclopedia of genes and genomes analysis mainly envolved Prostate cancer, Hepatitis B, Kaposi sarcoma-associated herpesvirus infection, Endocrine resistance, Lipid and atherosclerosis, Central carbon metabolism in cancer, Human cytomegalovirus infection and HIF-1 signaling pathway. STAT3, SRC, PIK3R1, and GRB2 were selected as core targets. The molecular docking results demonstrated strong interactions between key components and their respective target proteins. Network pharmacological analysis suggested that SXBM could treat IDA by regulating various biological processes and related signaling pathways. It laid the foundation for further elucidating the molecular mechanism of SXBM treatment of IDA.


miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase.

  • Chunli Xu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA‑153 (miR‑153) on the neural differentiation of HT‑22 cells. Overexpression of miR‑153 induced the differentiation of HT‑22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit‑8 assay. Furthermore, miR‑153 increased the expression of neuron‑specific γ‑enolase (NSE), neuronal nuclei (NeuN), and N‑ethylmaleimide‑sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR‑153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR‑153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ‑enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR‑153 may be a potential target for the treatment of certain neurodegenerative diseases.


Short hairpin RNA silencing of TGF-βRII and FZD-7 synergistically suppresses proliferation and metastasis of hepatocellular carcinoma cells.

  • Cong Chen‎ et al.
  • Oncology letters‎
  • 2016‎

Transforming growth factor-β (TGF-β) is a multifunctional regulator of cell growth, apoptosis, differentiation and migration. The Wnt/β-catenin signaling pathway has been implicated in a wide spectrum of diseases, including numerous cancers and degenerative disease. The aim of the present study was to investigate if simultaneous blocking of TGF-β and Wnt/β-catenin signaling pathways exerts synergistic anti-tumor effects on hepatocellular carcinoma (HCC) cells. Short hairpin (sh) RNA eukaryotic expression vectors, specific to TGF-β receptor II (RII) and Frizzled receptor (FZD)-7, were constructed by gene recombination. The expression vectors were transfected into human HCC HepG2 and Huh-7 cells using Lipofectamine 2000 to investigate the synergistic effects between TGF-β and Wnt/β-catenin signaling pathways on HCC cell proliferation, invasion and migration and the cell-cycle distribution. Western blot analysis was used to identify the expression of β-catenin, c-Myc and cyclin D1 in transfected cells to investigate the underlying mechanisms that cause TGF-β and Wnt/β-catenin signaling in HCC cells. shTGF-βRII-c and shFZD-7-2 were selected as the most efficient plasmids. A cell growth assay and colony-forming assay consistently demonstrated that the proliferative activity of the co-transfected group was significantly decreased compared to the single-transfected group. A wound healing invasion and migration assay demonstrated that co-transfection of shTGF-βRII-c and shFZD-7-2 decreased the invasion and migration abilities of the cells compared with either single-transfected group. In addition, the present study demonstrated that the observed reduction in cell proliferation was due to the cells arresting at the G1 phase of the cell cycle, and the downregulation of β-catenin, c-Myc and cyclin D1 impaired the proliferative and invasive abilities of the HCC cells. The present results demonstrate that simultaneous blocking of TGF-β and Wnt/β-catenin signaling by targeting TGF-βRII and FZD-7 may inhibit the proliferation and metastasis of HCC cells more effectively compared with blocking either the TGF-β or Wnt/β-catenin pathway.


Inhibition of mammalian target of rapamycin by rapamycin increases the radiosensitivity of esophageal carcinoma Eca109 cells.

  • Dejun Zhang‎ et al.
  • Oncology letters‎
  • 2014‎

The aim of the present study was to investigate whether radiation induces the mammalian target of rapamycin (Rap) (mTOR) signaling pathway in esophageal carcinoma Eca109 cells, and whether mTOR inhibition by rapamycin increases Eca109 cell radiosensitivity. Changes in the levels of mTOR signaling pathway and DNA damage-repair proteins in Eca109 cells prior to and following radiation were determined. The Eca109 cells were treated with Rap (0, 100, 200 and 400 nmol/l) in combination with radiation (0, 2, 4 and 6 Gy). The cell proliferation inhibition rate was determined by MTT assay. The optimum Rap concentration and radiation dose, which appropriately inhibited cell proliferation, were then selected for further study. An appropriate combination of Rap and radiation for the Eca109 cells was also selected and changes in the mTOR signaling pathway, apoptosis and DNA damage-repair proteins, as well as in cell clone formation, survival curves, the apoptosis rate and radiation-induced DNA damage were determined. The expression of the mTOR signaling pathway and DNA damage-repair proteins were found to increase following the irradiation of the Eca109 cells. In addition, Rap was found to inhibit the mTOR signaling pathway and the expression of the DNA damage-repair proteins. At the same radiation dose, with increasing Rap concentration, the proliferation inhibition rates of the Eca109 cells were found to improve. The clone formation and survival curves of the experimental group were less than those of the control groups. Furthermore, the cell apoptosis rate and expression of cleaved caspase-3 and bax in the experimental group were higher than those of the control groups, whereas the expression of bcl-2 was less than that of the control groups. The radiation-induced DNA damage of the experimental group was greater than that of the control group. The inhibition of mTOR by Rap was found to effectively inhibit the proliferation, survival and radiation-induced DNA damage repair of the Eca109 cells following irradiation, as well as promoting radiation-induced apoptosis, thereby increasing the radiosensitivity of the esophageal carcinoma Eca109 cells.


Programmable nano-reactors for stochastic sensing.

  • Wendong Jia‎ et al.
  • Nature communications‎
  • 2021‎

Chemical reactions of single molecules, caused by rapid formation or breaking of chemical bonds, are difficult to observe even with state-of-the-art instruments. A biological nanopore can be engineered into a single molecule reactor, capable of detecting the binding of a monatomic ion or the transient appearance of chemical intermediates. Pore engineering of this type is however technically challenging, which has significantly restricted further development of this technique. We propose a versatile strategy, "programmable nano-reactors for stochastic sensing" (PNRSS), by which a variety of single molecule reactions of hydrogen peroxide, metal ions, ethylene glycol, glycerol, lactic acid, vitamins, catecholamines or nucleoside analogues can be observed directly. PNRSS presents a refined sensing resolution which can be further enhanced by an artificial intelligence algorithm. Remdesivir, a nucleoside analogue and an investigational anti-viral drug used to treat COVID-19, can be distinguished from its active triphosphate form by PNRSS, suggesting applications in pharmacokinetics or drug screening.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: