Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

NALCN channelopathies: Distinguishing gain-of-function and loss-of-function mutations.

  • Eric G Bend‎ et al.
  • Neurology‎
  • 2016‎

To perform genotype-phenotype analysis in an infant with congenital arthrogryposis due to a de novo missense mutation in the NALCN ion channel and explore the mechanism of pathogenicity using a Caenorhabditis elegans model.


Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities.

  • Lot Snijders Blok‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described.


STING strengthens host anti-hantaviral immunity through an interferon-independent pathway.

  • Kerong Wang‎ et al.
  • Virologica Sinica‎
  • 2023‎

Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.


Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome.

  • Margot A Cousin‎ et al.
  • Nature genetics‎
  • 2021‎

SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.


Haploinsufficiency of the Notch Ligand DLL1 Causes Variable Neurodevelopmental Disorders.

  • Björn Fischer-Zirnsak‎ et al.
  • American journal of human genetics‎
  • 2019‎

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Bolt-Loosening Detection Using 1D and 2D Input Data Based on Two-Stream Convolutional Neural Networks.

  • Xiaoli Hou‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2022‎

At present, the detection accuracy of bolt-loosening diagnoses is still not high. In order to improve the detection accuracy, this paper proposes a fault diagnosis model based on the TSCNN model, which can simultaneously extract fault features from vibration signals and time-frequency images and can precisely detect the bolt-loosening states. In this paper, the LeNet-5 network is improved by adjusting the size and number of the convolution kernels, introducing the dropout operation, and building a two-dimensional convolutional neural network (2DCNN) model. Combining the advantages of a one-dimensional convolutional neural network (1DCNN) with wide first-layer kernels to suppress high-frequency noise, a two-stream convolutional neural network (TSCNN) is proposed based on 1D and 2D input data. The proposed model uses raw vibration signals and time-frequency images as input and automatically extracts sensitive features and representative information. Finally, the effectiveness and superiority of the proposed approach are verified by practical experiments that are carried out on a machine tool guideway. The experimental results show that the proposed approach can effectively achieve end-to-end bolt-loosening fault diagnoses, with an average recognition accuracy of 99.58%. In addition, the method can easily achieve over 93% accuracy when the SNR is over 0 dB without any denoising preprocessing. The results show that the proposed approach not only achieves high classification accuracy but also has good noise immunity.


LncRNA NEAT1 Potentiates SREBP2 Activity to Promote Inflammatory Macrophage Activation and Limit Hantaan Virus Propagation.

  • Yongheng Yang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.


Involvement of spinal NADPH oxidase 4 and endoplasmic reticulum stress in morphine-tolerant rats.

  • Xuyang Xiao‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.


RIPK3 promotes hantaviral replication by restricting JAK-STAT signaling without triggering necroptosis.

  • Yue Si‎ et al.
  • Virologica Sinica‎
  • 2023‎

Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.


Phenotype and mutation expansion of the PTPN23 associated disorder characterized by neurodevelopmental delay and structural brain abnormalities.

  • Renee Bend‎ et al.
  • European journal of human genetics : EJHG‎
  • 2020‎

PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.


A biallelic pathogenic variant in the OGDH gene results in a neurological disorder with features of a mitochondrial disease.

  • Zheng Yie Yap‎ et al.
  • Journal of inherited metabolic disease‎
  • 2021‎

2-Oxoglutarate dehydrogenase (OGDH) is a rate-limiting enzyme in the mitochondrial TCA cycle, encoded by the OGDH gene. α-Ketoglutarate dehydrogenase (OGDH) deficiency was previously reported in association with developmental delay, hypotonia, and movement disorders and metabolic decompensation, with no genetic data provided. Using whole exome sequencing, we identified two individuals carrying a homozygous missense variant c.959A>G (p.N320S) in the OGDH gene. These individuals presented with global developmental delay, elevated lactate, ataxia and seizure. Fibroblast analysis and modeling of the mutation in Drosophila were used to evaluate pathogenicity of the variant. Skin fibroblasts from subject # 2 showed a decrease in both OGDH protein and enzyme activity. Transfection of human OGDH cDNA in HEK293 cells carrying p.N320S also produced significantly lower protein levels compared to those with wild-type cDNA. Loss of Drosophila Ogdh (dOgdh) caused early developmental lethality, rescued by expressing wild-type dOgdh (dOgdhWT ) or human OGDH (OGDHWT ) cDNA. In contrast, expression to the mutant OGDH (OGDHN320S ) or dOgdh carrying homologous mutations to human OGDH p.N320S variant (dOgdhN324S ) failed to rescue lethality of dOgdh null mutants. Knockdown of dOgdh in the nervous system resulted in locomotion defects which were rescued by dOgdhWT expression but not by dOgdhN324S expression. Collectively, the results indicate that c.959A>G variant in OGDH leads to an amino acid change (p.N320S) causing a severe loss of OGDH protein function. Our study establishes in the first time a genetic link between an OGDH gene mutation and OGDH deficiency.


Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents.

  • Hongwei Ma‎ et al.
  • Nature communications‎
  • 2024‎

Hantaan virus (HTNV) is asymptomatically carried by rodents, yet causes lethal hemorrhagic fever with renal syndrome in humans, the underlying mechanisms of which remain to be elucidated. Here, we show that differential macrophage responses may determine disparate infection outcomes. In mice, late-phase inactivation of inflammatory macrophage prevents cytokine storm syndrome that usually occurs in HTNV-infected patients. This is attained by elaborate crosstalk between Notch and NF-κB pathways. Mechanistically, Notch receptors activated by HTNV enhance NF-κB signaling by recruiting IKKβ and p65, promoting inflammatory macrophage polarization in both species. However, in mice rather than humans, Notch-mediated inflammation is timely restrained by a series of murine-specific long noncoding RNAs transcribed by the Notch pathway in a negative feedback manner. Among them, the lnc-ip65 detaches p65 from the Notch receptor and inhibits p65 phosphorylation, rewiring macrophages from the pro-inflammation to the pro-resolution phenotype. Genetic ablation of lnc-ip65 leads to destructive HTNV infection in mice. Thus, our findings reveal an immune-braking function of murine noncoding RNAs, offering a special therapeutic strategy for HTNV infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: