Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Downregulation of GRP78 and XIAP is correlated with apoptosis during cerulein-induced acute pancreatitis in rats via regulation of caspase activation.

  • Yong Liu‎ et al.
  • Molecular medicine reports‎
  • 2013‎

Our aim in the present study was to investigate the potential roles of the 78-kDa glucose-regulated protein (GRP78) and the X-linked inhibitor of apoptosis protein (XIAP) in the regulation of apoptosis during cerulein-induced acute pancreatitis (CAP). A rat CAP model was induced by injection of cerulein (50 µg/kg), and the severity of CAP was estimated by measuring serum amylase and lipase, pancreatic edema and histological changes. Pancreatic acinar cell apoptosis was determined by terminal-deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) assay, and the expression of GRP78, XIAP and the apoptotic genes caspase-3, -7 and -9 were determined by real‑time quantitative PCR and western blotting. After induction with cerulein, increased serum amylase and lipase, pancreatic edema, inflammation and apoptosis were observed in CAP rats. Furthermore, the mRNA and protein levels of GRP78 and XIAP were significantly downregulated in CAP rats, while the mRNA levels of caspase-3, -7 and -9, as well as the cell apoptotic index were markedly increased when compared with control rats (P<0.05). The expression of GRP78 and XIAP was negatively correlated with caspase expression in CAP (P<0.05). This study suggests that the downregulation of GRP78 and XIAP were correlated with apoptosis in pancreatic acinar cells, and that this may occur through the regulation of caspase activation during CAP.


Effects of cytochrome P450 family 3 subfamily A member 5 gene polymorphisms on daunorubicin metabolism and adverse reactions in patients with acute leukemia.

  • Zhen Huang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to investigate the association between the genetic polymorphism of cytochrome P450 family 3 subfamily A member 5 (CYP3A5) and the activity of CYP3A and plasma concentrations of daunorubicin (DNR) in patients with acute leukemia. A total of 36 children with newly diagnosed acute lymphoblastic leukemia were enrolled in the study. Polymerase chain reaction (PCR)‑restriction fragment length polymorphism and PCR product sequencing were used to detect the genotype of CYP3A5*3. PCR was then used to express the mRNA expression of CYP3A5. A midazolam probe method was used to detect CYP3A enzyme activity, and DNR concentrations were measured using high performance liquid chromatography. Children with different genotypes had different mRNA expression levels of CYP3A5, and CYP3A enzyme activity in children with the CYP3A5*1 allele was higher, compared with that in children with the CYP3A5*3 allele. In addition, the area under the curve (AUC)0‑24 h and AUC0‑∞ of DNR were significantly different in children with different genotypes, however, no statistically significant differences were found in half‑life or maximum concentration. The AUC of DNR was increased in children with acute lymphatic leukemia who suffered from cardiotoxicity, compared with those in the normal group. The CYP3A5*3 gene polymorphism was closely associated with the mRNA expression of CYP3A5, CYP3A enzyme activity and DNR plasma drug concentration, and exhibited different drug adverse reactions.


Effect and mechanism of RNAi targeting WWTR1 on biological activity of gastric cancer cells SGC7901.

  • Yuan Li‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Gastric cancer (GC) is one of the most common malignancies in the world. It is essential to develop novel targets and therapeutic approaches for GC, which requires identification of novel functional molecules. WW‑domain containing transcription regulator 1 (WWTR1) may activate many transcriptional factors and exhibit an important role in the development of various tissues in mammals. The results of the present study demonstrated that mRNA and protein levels of WWTR1 are increased in GC tissues and cell lines. The SGC7901 cell line was selected to perform RNA interference (RNAi) targeting WWTR1, and for subsequent study. Compared with control groups (cells without any treatment) and mock groups (cells treated with nonspecific siRNA), cell proliferation of siWWTR1 cells (cells treated with WWTR1 siRNA) was detected using a Cell Counting Kit‑8 assay at 12, 24 and 48 h, and decreased in a time‑dependent manner. Cell cycle and apoptosis status were determined by flow cytometry, and it was demonstrated that G1/S transition was blocked in the cell cycle and apoptosis promoted in siWWTR1 cells, compared with control and mock cells. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to detect the mRNA and protein levels of cell cycle and apoptosis‑associated factors. The expression of Cyclin D1, cancer Myc and B cell lymphoma/leukemia‑2 (Bcl‑2) decreased and Bcl‑2 associated X protein increased significantly in siWWRT1 cells, at the mRNA and protein level, compared with control and mock cells. With the exception of the Hippo pathway, siWWTR1 regulated downstream factors, including mothers against decapentaplegic homolog family member 3 (SMAD3) and inhibitor of DNA binding 1, HLH protein (ID1), HLH protein in the transforming growth factor (TGF)‑β pathway. The expression of asparagine synthetase was decreased whereas ID1, SMAD3 (proteins that participate in intracellular TGF‑β transduction) and betacellulin increased notably in siWWRT1 cells. In conclusion, WWTR1 promotes cell proliferation and inhibits apoptosis of GC cells by regulating cell cycle/apoptosis‑associated factors, and effectors in the TGF‑β pathway.


Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma.

  • Yuan Li‎ et al.
  • Molecular medicine reports‎
  • 2012‎

Burkitt lymphoma (BL) has been reported to be strongly associated with Epstein-Barr virus (EBV) infection. The fact that EBV is generally present in cancer cells but rarely found in healthy cells represents an opportunity for targeted cancer therapy. One approach is to activate the lytic replication cycle of the latent EBV. Nuclear factor (NF)-κB is thought to play an essential role in EBV lytic infection. Elevated NF-κB levels inhibit EBV lytic replication. Parthenolide (PN) is a sesquiterpene lactone found in medicinal plants, particularly in feverfew (Tanacetum parthenium). The aim of the present study was to analyze the effect of PN on the survival of Raji EBV-positive lymphoma cells. Raji cells were treated with 0, 4 or 6 µmol/l PN for 48 h. MTT assay and western blot analysis were performed to evaluate the findings. Results showd that PN suppressed the growth of the EBV-positive BL cell line, Raji, and activated the transcription of BZLF1 and BRLF1 by inhibiting NF-κB activity. Most notably, when PN was used in combination with ganciclovir (GCV), the cytotoxic effect of PN was amplified. These data suggest that the induction of lytic EBV infection with PN in combination with GCV may be a viral‑targeted therapy for EBV-associated BL.


Donepezil ameliorates oxygen‑glucose deprivation/reoxygenation‑induced cardiac microvascular endothelial cell dysfunction through PARP1/NF‑κB signaling.

  • Yuan Li‎ et al.
  • Molecular medicine reports‎
  • 2022‎

Ischemia/reperfusion (I/R) injury is a serious clinical condition characterized by high morbidity and mortality rates. Donepezil plays a neuroprotective role in I/R‑associated diseases. The aim of the present study was to investigate the role and the potential mechanism of action of donepezil in I/R‑induced myocardial microvascular endothelial cell dysfunction. An I/R model was simulated using oxygen‑glucose deprivation/reoxygenation (OGD/R) injury in human cardiac microvascular endothelial cells (CMECs). Cell viability and lactate dehydrogenase release were examined following treatment with donepezil. Commercial kits were used to evaluate cell apoptosis, cell permeability and caspase‑3 activity. The expression levels of apoptosis‑associated proteins, as well as proteins found in tight junctions or involved in the poly(ADP‑ribose) polymerase 1 (PARP1)/NF‑κB pathway, were measured using western blotting. These parameters were also examined following PARP1 overexpression. The results demonstrated that donepezil increased cell viability and reduced toxicity in OGD/R‑treated CMECs. The apoptotic rate, caspase‑3 activity and protein expression levels of Bax and cleaved caspase‑3 were significantly reduced following donepezil treatment, which was accompanied by Bcl‑2 upregulation. Moreover, cell permeability was notably reduced, coupled with a marked increase in the expression of tight junction‑associated proteins. The expression levels of proteins related to PARP1/NF‑κB signaling were significantly downregulated in CMECs following donepezil treatment. However, the protective effects of donepezil on OGD/R‑induced CMEC injury were reversed following PARP1 overexpression. In conclusion, donepezil suppressed OGD/R‑induced CMEC dysfunction via PARP1/NF‑κB signaling. This finding provided insight into the mechanism underlying myocardial I/R injury.


Identification of key genes in hepatocellular carcinoma and validation of the candidate gene, cdc25a, using gene set enrichment analysis, meta-analysis and cross-species comparison.

  • Xiaoxu Lu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present study was to determine key pathways and genes involved in the pathogenesis of hepatocellular carcinoma (HCC) through bioinformatic analyses of HCC microarray data based on cross-species comparison. Microarray data of gene expression in HCC in different species were analyzed using gene set enrichment analysis (GSEA) and meta-analysis. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to determine the mRNA and protein expression levels of cdc25a, one of the identified candidate genes, in human, rat and tree shrew samples. The cell cycle pathway had the largest overlap between the GSEA and meta-analysis. Meta-analyses showed that 25 genes, including cdc25a, in the cell cycle pathway were differentially expressed. Cdc25a mRNA levels in HCC tissues were higher than those in normal liver tissues in humans, rats and tree shrews, and the expression level of cdc25a in HCC tissues was higher than in corresponding paraneoplastic tissues in humans and rats. In human HCC tissues, the cdc25a mRNA level was significantly correlated with clinical stage, portal vein tumor thrombosis and extrahepatic metastasis. Western blotting showed that, cdc25a protein levels were significantly upregulated in HCC tissues in humans, rats and tree shrews. In conclusion, GSEA and meta-analysis can be combined to identify key molecules and pathways involved in HCC. This study demonstrated that the cell cycle pathway and the cdc25a gene may be crucial in the pathogenesis and progression of HCC.


circEIF4G2 modulates the malignant features of cervical cancer via the miR‑218/HOXA1 pathway.

  • Yifan Mao‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Circular RNAs (circRNAs) serve important roles in tumorigenesis and may be used as novel molecular biomarkers for clinical diagnosis. However, the role and molecular mechanisms of circRNAs in cervical cancer (CC) remain unknown. In the present study, circRNA isoform of eukaryotic translation initiation factor 4γ2 (circEIF4G2) was revealed to be significantly upregulated in CC tissues and cell lines. Furthermore, increased expression of circEIF4G2 was associated with poor prognosis in patients with CC. circEIF4G2 knockdown suppressed the malignant features of CC cells, including cell proliferation, colony formation, migration and invasion. Additionally, circEIF4G2 was identified to serve as a sponge for microRNA‑218 (miR‑218), which targeted homeobox A1 (HOXA1). Furthermore, circEIF4G2 may increase the expression levels of HOXA1 by sponging miR‑218. Rescue experiments suggested that transfection with a miR‑218 inhibitor attenuated the inhibitory effects of circEIF4G2 knockdown on cell proliferation, migration and invasion. Furthermore, silencing HOXA1 reversed the effects of the miR‑218 inhibitor on CC cells. Collectively, the present findings suggested that circEIF4G2 promoted cell proliferation and migration via the miR‑218/HOXA1 pathway.


Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons.

  • Min Yan‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia‑associated neuronal death in non‑human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK‑801 and the calcium chelator ethylene glycol‑bis (2‑aminoethylether)‑N, N, N', N'‑tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal‑associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α‑fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N‑Acetyl‑L‑cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.


Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells.

  • Yan-Ping Zeng‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Aspirin is a commonly used medicine as an effective antipyretic, analgesic and anti-inflammatory drug. Previous studies have demonstrated its potential effects of anti-postmenopausal osteoporosis, while the molecular mechanisms remain unclear. The effects of aspirin on receptor‑activator of nuclear factor κB (NF‑κB) ligand (RANKL)‑induced osteoclasts were investigated in RAW264.7 cells in the current study. Using tartrate‑resistant acid phosphatase (TRAP) staining, it was observed that aspirin inhibited the differentiation of RANKL‑induced RAW264.7 cells. The mRNA expression of osteoclastic marker genes, including cathepsin K, TRAP, matrix metalloproteinase 9 and calcitonin receptor, were suppressed by aspirin as identified using reverse transcription‑quantitative polymerase chain reaction analysis. The immunofluorescence assay indicated that aspirin markedly inhibited NF‑κB p65 translocation to the nucleus in RANKL‑induced RAW264.7 cells. In addition, aspirin also suppressed the phosphorylation of mitogen‑activated protein kinases (MAPKs), observed by western blot analysis. Taken together, these data identified that aspirin inhibits osteoclastogenesis by suppressing the activation of NF‑κB and MAPKs in RANKL‑induced RAW264.7 cells, implying that aspirin may possess therapeutic potential for use in the prevention and treatment of osteoporosis.


Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e.

  • Yong Xu‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Previous studies have demonstrated that dysregulation of micro (mi)RNAs is associated with the etiology of various neuropsychiatric disorders, including depression and schizophrenia. Cerebralcare Granule® (CG) is a Chinese herbal medicine, which has been reported to have an ameliorative effect on brain injury by attenuating blood‑brain barrier disruption and improving hippocampal neural function. The present study aimed to evaluate the cognitive behavior of rats continuously overexpressing miRNA‑30e (lenti‑miRNA‑30e), prior to and following the administration of CG. In addition, the mechanisms underlying the ameliorative effects of CG were investigated. The cognitive ability of the rats was assessed using an open‑field test and a Morris water maze spatial reference/working memory test. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect neuronal apoptosis in the dentate gyrus of the hippocampus. Immunohistochemical analysis and western blotting were conducted to detect the expression levels of B‑cell lymphoma 2 (BCL‑2) and ubiquitin‑conjugating enzyme 9 (UBC9), in order to examine neuronal apoptosis. The lenti‑miRNA‑30e rats exhibited increased signs of anxiety, depression, hyperactivity and schizophrenia, which resulted in a severe impairment in cognitive ability. Furthermore, in the dentate gyrus of these rats, the expression levels of BCL‑2 and UBC9 were reduced and apoptosis was increased. The administration of CG alleviated cognitive impairment, enhanced the expression levels of BCL‑2 and UBC9, and reduced apoptosis in the dentate gyrus in the lenti‑miRNA‑30e rats. No significant differences were detected in behavioral indicators between the lenti‑miRNA‑30e rats treated with CG and the normal controls. These findings suggested that CG exerts a potent therapeutic effect, conferred by its ability to enhance the expression levels of BCL‑2 and UBC9, which inhibits the apoptotic process in neuronal cells. Therefore, CG may be considered a potential therapeutic strategy for the treatment of cognitive impairment in mental disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: