Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes.

  • Ryo Kinoshita‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2015‎

The enhanced permeability and retention (EPR) effect is a unique phenomenon of solid tumors, and it can serve as a basis for the development of macromolecular anticancer therapy. We have previously found that recombinant human serum albumin dimer, and especially its S-nitrosated form (SNO-HSA-Dimer), is an enhancer of the EPR effect. In this study, we investigated the influence of SNO-HSA-Dimer on the anti-tumor effect of two types of macromolecular anti-tumor drugs, namely N-(2-hydroxypropyl)methacrylamide polymer conjugated with zinc protoporphyrin, which forms micelles and can be used for fluorescence studies. The other was PEGylated liposomal doxorubicin (Doxil), a typical example of a stealth liposome approved for medical usage. In mice having C26 tumors with highly permeable vasculature, SNO-HSA-Dimer increases tumor accumulation of the drugs by a factor 3-4 and thereby their anti-tumor effects. Experiments with Evans blue revealed increased EPR effect in all parts of the tumor. Furthermore, SNO-HSA-Dimer improves the anti-metastatic effects of Doxil and reduces its minor uptake in non-tumorous organs such as liver and kidney. Tumor accumulation of Doxil in B16 tumors, which are characterized by a low permeable vasculature, increased even more (6-fold) in the presence of SNO-HSA-Dimer, and the improved accumulation lead to decreased tumor volume and increased survival of the animals. The administration of SNO-HSA-Dimer itself is safe, because it has no effect on blood pressure, heart rate or on several biochemical parameters. The present findings indicate that SNO-HSA-Dimer is promising for enhancing the EPR effect and consequently the specific, therapeutic effects of macromolecular anticancer drugs.


Modulation of antitumor immunity contributes to the enhanced therapeutic efficacy of liposomal oxaliplatin in mouse model.

  • Taro Shimizu‎ et al.
  • Cancer science‎
  • 2017‎

Immune modulation of the tumor microenvironment has been reported to participate in the therapeutic efficacy of many chemotherapeutic agents. Recently, we reported that liposomal encapsulation of oxaliplatin (l-OHP) within PEGylated liposomes conferred a superior antitumor efficacy to free l-OHP in murine colorectal carcinoma-bearing mice through permitting preferential accumulation of the encapsulated drug within tumor tissue. However, the contribution of the immune-modulatory properties of liposomal l-OHP and/or free l-OHP to the overall antitumor efficacy was not elucidated. In the present study, therefore, we investigated the effect of liposomal encapsulation of l-OHP within PEGylated liposomes on the antitumor immunity in both immunocompetent and immunodeficient mice. Liposomal l-OHP significantly suppressed the growth of tumors implanted in immunocompetent mice, but not in immunodeficient mice. In immunocompetent mice, liposomal l-OHP increased the tumor MHC-1 level and preserved antitumor immunity through decreasing the number of immune suppressor cells, including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, which collectively suppress CD8+ T cell-mediated tumor cells killing. In contrast, free l-OHP ruined antitumor immunity. These results suggest that the antitumor efficacy of liposomal l-OHP is attributed, on the one hand, to its immunomodulatory effect on tumor immune microenvironment that is superior to that of free l-OHP, and on the other hand, to its direct cytotoxic effect on tumor cells.


Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.

  • Ryo Kinoshita‎ et al.
  • Biomaterials‎
  • 2017‎

In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane®). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed.


Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

  • Ken-Ichiro Tanaka‎ et al.
  • International journal of pharmaceutics‎
  • 2018‎

Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu2+/Zn2+-induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu2+/Zn2+-induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu2+/Zn2+-induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu2+ and Zn2+ after Cu2+/Zn2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu2+/Zn2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu2+/Zn2+-induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases.


Thioredoxin-albumin fusion protein prevents urban aerosol-induced lung injury via suppressing oxidative stress-related neutrophil extracellular trap formation.

  • Ken-Ichiro Tanaka‎ et al.
  • Environmental pollution (Barking, Essex : 1987)‎
  • 2021‎

The number of deaths from air pollution worldwide is estimated at 8.8 million per year, more than the number of deaths from smoking. Air pollutants, such as PM2.5, are known to induce respiratory and cardiovascular diseases by inducing oxidative stress. Thioredoxin (Trx) is a 12-kDa endogenous protein that exerts antioxidant activity by promoting dithiol disulfide exchange reactions. We previously synthesized human serum albumin-fused thioredoxin (HSA-Trx), which has a longer half-life in plasma compared with Trx, and demonstrated its efficacy against various diseases including respiratory diseases. Here, we examined the effect of HSA-Trx on urban aerosol-induced lung injury in mice. Urban aerosols induced lung injury and inflammatory responses in ICR mice, but intravenous administration of HSA-Trx markedly inhibited these responses. We next analyzed reactive oxygen species (ROS) production in murine lungs using an in vivo imaging system. The results show that intratracheal administration of urban aerosols induced ROS production that was inhibited by intravenously administered HSA-Trx. Finally, we found that HSA-Trx inhibited the urban aerosol-induced increase in levels of neutrophilic extracellular trap (NET) indicators (i.e., double-stranded DNA, citrullinated histone H3, and neutrophil elastase) in bronchoalveolar lavage fluid (BALF). Together, these findings suggest that HSA-Trx prevents urban aerosol-induced acute lung injury by suppressing ROS production and neutrophilic inflammation. Thus, HSA-Trx may be a potential candidate drug for preventing the onset or exacerbation of lung injury caused by air pollutants.


A Unique Gene-Silencing Approach, Using an Intelligent RNA Expression Device (iRed), Results in Minimal Immune Stimulation When Given by Local Intrapleural Injection in Malignant Pleural Mesothelioma.

  • Hidenori Ando‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection.


The DsbA-L gene is associated with respiratory function of the elderly via its adiponectin multimeric or antioxidant properties.

  • Kentaro Oniki‎ et al.
  • Scientific reports‎
  • 2020‎

Oxidative stress and inflammation play a key role in the age-related decline in the respiratory function. Adipokine in relation to the metabolic and inflammatory systems is attracting growing interest in the field of respiratory dysfunction. The present clinical and experimental studies investigated the role of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) gene, which has antioxidant and adiponectin multimeric (i.e. activation) properties, on the respiratory function of the elderly. We performed a retrospective longitudinal genotype-phenotype relationship analysis of 318 Japanese relatively elderly participants (mean age ± standard deviation: 67.0 ± 5.8 years) during a health screening program and an in vitro DsbA-L knock-down evaluation using 16HBE14o-cells, a commonly evaluated human airway epithelial cell line. The DsbA-L rs1917760 polymorphism was associated with a reduction in the ratio of forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) and %FEV1 and with the elevation of the prevalence of FEV1/FVC < 70%. We also confirmed that the polymorphism was associated with a decreased respiratory function in relation to a decrease in the ratio of high-molecular-weight adiponectin/total adiponectin (as a marker of adiponectin multimerization) and an increase in the oxidized human serum albumin (as an oxidative stress marker). Furthermore, we clarified that DsbA-L knock-down induced oxidative stress and up-regulated the mucus production in human airway epithelial cells. These findings suggest that the DsbA-L gene may play a role in protecting the respiratory function of the elderly, possibly via increased systemic adiponectin functions secreted from adipocytes or through systemic and/or local pulmonary antioxidant properties.


Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: Appearance of an unexplained mechanism in the ABC phenomenon.

  • Marwa Mohamed El Sayed‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

The accelerated blood clearance (ABC) phenomenon, caused in large degree via in vivo anti-PEG IgM production, is one of obstacles for development of PEGylated liposome and protein formulations, due to decreased efficiency and/or side effects such as anaphylaxis upon repeat administrations. We have shown in murine ABC models that splenectomy suppressed the level of anti-PEG IgM production induced by PEGylated liposomes, indicating that murine splenic B cells play an important role in its production. However, splenectomy did not completely inhibit production of anti-PEG IgM, suggesting that other cells may contribute to its production in the ABC phenomenon. In this study, we examined the contribution of hepatosplenic phagocytic cells to anti-PEG IgM production and clearance of PEGylated liposomes during the ABC phenomenon. Depletion of hepatosplenic phagocytic cells by pretreatment of mice with clodronate-containing non-PEGylated liposomes suppressed anti-PEG IgM production to a considerable degree, without a change in the number of splenic B cells, and attenuated the enhanced clearance of second dose of PEGylated liposomes. These results suggest that hepatosplenic phagocytic cells, in addition to splenic B cells, contribute to the production of anti-PEG IgM and the ABC phenomenon against PEGylated liposomes. The mechanism whereby splenic B cells interact with hepatosplenic phagocytic cells to produce anti-PEG IgM, upon administration of an initial dose of PEGylated liposomes remains to be elucidated.


Cell-penetrating mechanism of intracellular targeting albumin: Contribution of macropinocytosis induction and endosomal escape.

  • Shota Ichimizu‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2019‎

We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.


Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH.

  • Hitoshi Maeda‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2022‎

Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.


8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells.

  • Yoshiaki Tanaka‎ et al.
  • Food science & nutrition‎
  • 2022‎

8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.


p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress.

  • Hiroshi Watanabe‎ et al.
  • Pharmacology research & perspectives‎
  • 2015‎

The major cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease. Here, p-Cresyl sulfate (PCS), a uremic toxin, is considered to be a risk factor for cardiovascular disease in CKD. However, our understanding of the vascular toxicity induced by PCS and its mechanism is incomplete. The purpose of this study was to determine whether PCS enhances the production of reactive oxygen species (ROS) in vascular endothelial and smooth muscle cells, resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human umbilical vein endothelial cells (HUVEC) and aortic smooth muscle cells (HASMC) by enhancing NADPH oxidase expression. PCS also up-regulates the mRNA levels and the protein secretion of monocyte chemotactic protein-1 (MCP-1) in HUVEC. In HASMC, PCS increased the mRNA levels of alkaline phosphatase (ALP), osteopontin (OPN), core-binding factor alpha 1, and ALP activity. The knockdown of Nox4, a subunit of NADPH oxidase, suppressed the cell toxicity induced by PCS. The vascular damage induced by PCS was largely suppressed in the presence of probenecid, an inhibitor of organic anion transporters (OAT). In PCS-overloaded 5/6-nephrectomized rats, plasma MCP-1 levels, OPN expression, and ALP activity of the aortic arch were increased, accompanied by the induction of Nox4 expression. Collectively, the vascular toxicity of PCS can be attributed to its intracellular accumulation via OAT, which results in an enhanced NADPH oxidase expression and increased ROS production. In conclusion, we found for the first time that PCS could play an important role in the development of cardiovascular disease by inducing vascular toxicity in the CKD condition.


Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction.

  • Yuki Enoki‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2017‎

Chronic kidney disease (CKD) patients experience skeletal muscle wasting and decreased exercise endurance. Our previous study demonstrated that indoxyl sulfate (IS), a uremic toxin, accelerates skeletal muscle atrophy. The purpose of this study was to examine the issue of whether IS causes mitochondria dysfunction and IS-targeted intervention using AST-120, which inhibits IS accumulation, or mitochondria-targeted intervention using L-carnitine or teneligliptin, a dipeptidyl peptidase-4 inhibitor which retains mitochondria function and alleviates skeletal muscle atrophy and muscle endurance in chronic kidney disease mice.


Design and tuning of a cell-penetrating albumin derivative as a versatile nanovehicle for intracellular drug delivery.

  • Shota Ichimizu‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2018‎

Human serum albumin (HSA) is a superior carrier for delivering extracellular drugs. However, the development of a cell-penetrating HSA remains a great challenge due to its low membrane permeability. We report herein on the design of a series of palmitoyl-poly-arginine peptides (CPPs) and an evaluation of their cell-penetrating effects after forming a complex with HSA for use in intracellular drug delivery. The palmitoyl CPPs forms a stable complex with HSA by anchoring itself to the high affinity palmitate binding sites of HSA. Among the CPPs evaluated, a cyclic polypeptide composed of D-dodecaarginines, palmitoyl-cyclic-(D-Arg)12 was the most effective for facilitating the cellular uptake of HSA by HeLa cells. Such a superior cell-penetrating capability is primarily mediated by macropinocytosis. The effect of the CPP on pharmacological activity was examined using three drugs loaded in HSA via three different methods: a) an HSA-paclitaxel complex, b) an HSA-doxorubicin covalent conjugate and c) an HSA-thioredoxin fusion protein. The results showed that cell-penetrating efficiency was increased with a corresponding and significant enhancement in pharmacological activity. In conclusion, palmitoyl-cyclic-(D-Arg)12/HSA is a versatile cell-penetrating drug delivery system with great potential for use as a nano-carrier for a wide diversity of pharmaceutical applications.


Reactivity of IgM antibodies elicited by PEGylated liposomes or PEGylated lipoplexes against auto and foreign antigens.

  • Hidenori Ando‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2018‎

Polyethylene glycol (PEG) is an attractive tool for the development of nanoparticle-based cancer therapy since it endows nanoparticles with extended-circulation properties. Nevertheless, recent reports have revealed that intravenous injection of either PEGylated liposomes (SLs) or PEGylated lipoplex (PLpx) could elicit an anti-PEG immunoglobulin (IgM) response in a T cell-independent (TI) manner that would substantially compromise the in vivo fate of PEGylated products upon repeated administration. In the same context, viral or bacterial infections trigger the production of polyreactive IgM that binds both self and foreign antigens. The polyreactivity of IgM elicited by SLs or PLpx, to bacteria and other polymers, however, is yet to be elucidated. In this study, the polyreactivity of IgM elicited by SLs or PLpx was challenged against different bacteria (TI antigens) and against synthetic polymer composed of repetitive structures (PVP-360 or FITC-dextran). Results demonstrated that anti-PEG IgM elicited by either SLs or PLpx showed no reactivity to various bacteria examined, while the IgM showed remarkable reactivity to both PVP-360 and FITC-dextran. In addition, interestingly, anti-PEG IgM elicited by either SLs or PLpx showed no antinuclear antibody-like immune reactivity, and, therefore, treatment with either SLs or PLpx was not expected to exacerbate autoimmune diseases such as systemic lupus erythematosus. Collectively, our findings could provide information supporting the safety of PEGylated nanoparticle-based pharmaceutics, particularly in patients with autoimmune diseases.


Renoprotective effect of long acting thioredoxin by modulating oxidative stress and macrophage migration inhibitory factor against rhabdomyolysis-associated acute kidney injury.

  • Kento Nishida‎ et al.
  • Scientific reports‎
  • 2015‎

Rhabdomyolysis-associated acute kidney injury (AKI) is a serious life-threatening condition. As such, more effective strategies are needed for its prevention. Thioredoxin-1 (Trx), a redox-active and macrophage migration inhibitory factor (MIF) modulating protein, has a short retention time in the blood. We examined the renoprotective effect of long acting Trx that was genetically fused with human serum albumin (HSA-Trx) against glycerol-induced AKI. An intravenous HSA-Trx pre-treatment attenuated the glycerol-induced decline in renal function, compared to a PBS, HSA or Trx alone. HSA-Trx caused a reduction in the tubular injuries and in the number of apoptosis-positive tubular cells. Renal superoxide, 8-hydroxy deoxyguanosine, nitrotyrosine and the plasma Cys34-cysteinylated albumin were clearly suppressed by the HSA-Trx treatment. Prior to decreasing TNF-α and IL-6, HSA-Trx suppressed an increase of plasma MIF level. In LLC-PK1 cells, HSA-Trx decreased the level of reactive oxygen species and lactate dehydrogenase release induced by myoglobin. HSA-Trx treatment resulted in a threefold increase in the survival of lethal glycerol-treated mice. The post-administration of HSA-Trx at 1 and 3 hr after glycerol injection exerted a significant renoprotective effect. These results suggest HSA-Trx has potential for use in the treatment of rhabdomyolysis-associated AKI via its extended effects of modulating oxidative stress and MIF.


Human serum albumin hydropersulfide is a potent reactive oxygen species scavenger in oxidative stress conditions such as chronic kidney disease.

  • Akitomo Shibata‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Recently, hydropersulfide (RSSH) was found to exist in mammalian tissues and fluids. Cysteine hydropersulfide can be found in free cysteine residues as well as in proteins, and it has potent antioxidative activity. Human serum albumin (HSA) is the most abundant protein in mammalian serum. HSA possesses a free thiol group in Cys-34 that could be a site for hydropersulfide formation. HSA hydropersulfide of high purity as a positive control was prepared by treatment of HSA with Na2S. The presence of HSA hydropersulfide was confirmed by spectroscopy and ESI-TOFMS analysis where molecular weights of HSA hydropersulfide by increments of approximately 32 Da (Sulfur atom) were detected. The fluorescent probe results showed that Alexa Fluor 680 conjugated maleimide (Red-Mal) was a suitable assay and bromotrimethylammoniumbimane bromide appeared to be a selective reagent for hydropersulfide. The effect of oxidative stress related disease on the existence of albumin hydropersulfides was examined in rat 5/6 nephrectomy model of chronic kidney disease (CKD). Interestingly, the level of hydropersulfides in rat 5/6 nephrectomy model serum was decreased by a uremic toxin that increases oxidative stress in rat 5/6 nephrectomy model. Furthermore, we demonstrated that the levels of HSA hydropersulfide in human subjects were reduced in CKD but restored by hemodialysis using Red-Mal assay. We conclude that HSA hydropersulfide could potentially play an important role in biological anti-oxidative defense, and it is a promising diagnostic and therapeutic marker of oxidative diseases.


Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1.

  • Yuki Enoki‎ et al.
  • Scientific reports‎
  • 2016‎

Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression.


Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies.

  • Haruka Takata‎ et al.
  • International journal of pharmaceutics‎
  • 2021‎

Nucleic acid-based therapy with plasmid DNA (pDNA) and small interfering RNA (siRNA) have received recent attention for their ability to modulate the cellular expression of genes and proteins. Polyethylene glycol-modified (PEGylated) cationic nanoparticles have been used as non-viral vectors for the in vivo delivery of these nucleic acids. We have reported that PEGylated cationic liposomes (PCL) including pDNA or siRNA induce anti-PEG antibodies upon repeated intravenous injection, leading to the formation of immune complexes and enhanced clearance from the blood of subsequent doses. However, the issue surrounding the association of nucleic acids with PCL whether induces anti-nucleic acid antibodies has not been studied. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with the character of end-organ damage and the presence of anti-nuclear antibodies. We used a healthy mouse and an SLE mouse model to test the hypothesis that nucleic acids associated with PCL induce anti-nuclear antibodies and then induce SLE and exacerbate SLE symptoms. We report here that pDNA or siRNA associated with PCL (pDNA/PCL or siRNA/PCL) induced anti-DNA or RNA antibodies, respectively, in healthy mice. Repeated injections did not, however, cause SLE-like symptoms in the healthy mice. In addition, in SLE-prone mice with pre-existing anti-nuclear antibodies, pDNA/PCL were deposited on the kidneys and exacerbated lupus nephritis subsequent to the formation of immune complexes. These results may imply that nucleic acids associated with PCL do not contribute to the onset of SLE in healthy individuals who lack anti-nuclear antibodies, but nucleic acids may exacerbate the symptoms in SLE patients who have pre-existing anti-nuclear antibodies.


S-Nitrosated alpha-1-acid glycoprotein exhibits antibacterial activity against multidrug-resistant bacteria strains and synergistically enhances the effect of antibiotics.

  • Yu Ishima‎ et al.
  • FASEB bioAdvances‎
  • 2019‎

Alpha-1-acid glycoprotein (AGP) is a major acute-phase protein. Biosynthesis of AGP increases markedly during inflammation and infection, similar to nitric oxide (NO) biosynthesis. AGP variant A (AGP) contains a reduced cysteine (Cys149). Previously, we reported that S-nitrosated AGP (SNO-AGP) synthesized by reaction with a NO donor, possessed very strong broad-spectrum antimicrobial activity (IC50 = 10-9-10-6 M). In this study, using a cecal ligation and puncture animal model, we confirmed that AGP can be endogenously S-nitrosated during infection. Furthermore, we examined the antibacterial property of SNO-AGP against multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa to investigate the involvement of SNO-AGP in the host defense system. Our results showed that SNO-AGP could inhibit multidrug efflux pump, AcrAB-TolC, a major contributor to bacterial multidrug resistance. In addition, SNO-AGP decreased biofilm formation and ATP level in bacteria, indicating that SNO-AGP can revert drug resistance. It was also noteworthy that SNO-AGP showed synergistic effects with the existing antibiotics (oxacillin, imipenem, norfloxacin, erythromycin, and tetracycline). In conclusion, SNO-AGP participated in the host defense system and has potential as a novel agent for single or combination antimicrobial therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: