Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Structure of the N-terminal extension of human aspartyl-tRNA synthetase: implications for its biological function.

  • Hae-Kap Cheong‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2003‎

Human aspartyl-tRNA synthetase (hDRS) contains an extension at the N-terminus, which is involved in the transfer of Asp-tRNA to elongation factor alpha1 (EF1alpha). The structure of the N-terminal extension is critical to its function. Conformational studies on the synthetic, 21-residue N-terminal extension peptide (Thr5-Lys25) of human aspartyl-tRNA synthetase using 1H nuclear magnetic resonance (NMR) spectroscopy, showed that the C-terminus adopts a regular alpha-helix with amphiphilicity, while the N-terminus shows a less-ordered structure with a flexible beta-turn. The observed characteristics suggest a structural switch model, such that when the tRNA is in the stretched conformation, the peptide reduces the rate of dissociation of Asp-tRNA from human aspartyl-tRNA synthetase, and provides enough time for elongation factor 1alpha to interact with the Asp-tRNA. Following Asp-tRNA transfer to EF1alpha, the peptide assumes the folded conformation. The structural switch model supports the direct transfer mechanism.


cAMP-dependent activation of protein kinase A as a therapeutic target of skin hyperpigmentation by diphenylmethylene hydrazinecarbothioamide.

  • Hyoeun Shin‎ et al.
  • British journal of pharmacology‎
  • 2015‎

cAMP as a second messenger stimulates expression of microphthalmia-associated transcription factor (MITF) or the tyrosinase gene in UVB-induced skin pigmentation. Diphenylmethylene hydrazinecarbothioamide (QNT 3-80) inhibits α-melanocyte-stimulating hormone (α-MSH)-induced melanin production in B16 murine melanoma cells but its molecular basis remains to be defined. Here, we investigated the mechanism underlying the amelioration of skin hyperpigmentation by QNT 3-80.


Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells.

  • Hyejin Tak‎ et al.
  • PloS one‎
  • 2013‎

Abnormal tau aggregation is a pathological hallmark of many neurodegenerative disorders and it is becoming apparent that soluble tau aggregates play a key role in neurodegeneration and memory impairment. Despite this pathological importance, there is currently no single method that allows monitoring soluble tau species in living cells. In this regard, we developed a cell-based sensor that visualizes tau self-assembly. By introducing bimolecular fluorescence complementation (BiFC) technique to tau, we were able to achieve spatial and temporal resolution of tau-tau interactions in a range of states, from soluble dimers to large aggregates. Under basal conditions, tau-BiFC cells exhibited little fluorescence intensity, implying that the majority of tau molecules exist as monomers. Upon chemically induced tau hyperphosphorylation, BiFC fluorescence greatly increased, indicating an increased level of tau-tau interactions. As an indicator of tau assembly, our BiFC sensor would be a useful tool for investigating tau pathology.


Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss.

  • Gayatri Arun‎ et al.
  • Genes & development‎
  • 2016‎

Genome-wide analyses have identified thousands of long noncoding RNAs (lncRNAs). Malat1 (metastasis-associated lung adenocarcinoma transcript 1) is among the most abundant lncRNAs whose expression is altered in numerous cancers. Here we report that genetic loss or systemic knockdown of Malat1 using antisense oligonucleotides (ASOs) in the MMTV (mouse mammary tumor virus)-PyMT mouse mammary carcinoma model results in slower tumor growth accompanied by significant differentiation into cystic tumors and a reduction in metastasis. Furthermore, Malat1 loss results in a reduction of branching morphogenesis in MMTV-PyMT- and Her2/neu-amplified tumor organoids, increased cell adhesion, and loss of migration. At the molecular level, Malat1 knockdown results in alterations in gene expression and changes in splicing patterns of genes involved in differentiation and protumorigenic signaling pathways. Together, these data demonstrate for the first time a functional role of Malat1 in regulating critical processes in mammary cancer pathogenesis. Thus, Malat1 represents an exciting therapeutic target, and Malat1 ASOs represent a potential therapy for inhibiting breast cancer progression.


Cytokine-induced killer cells interact with tumor lysate-pulsed dendritic cells via CCR5 signaling.

  • Hong Kyung Lee‎ et al.
  • Cancer letters‎
  • 2016‎

The antitumor activity of cytokine-induced killer (CIK) cells can be increased by co-culturing them with tumor lysate-pulsed dendritic cells (tDCs); this phenomenon has been studied mainly at the population level. Using time-lapse imaging, we examined how CIK cells gather information from tDCs at the single-cell level. tDCs highly expressed CCL5, which bound CCR5 expressed on CIK cells. tDCs strongly induced migration of Ccr5(+/+) CIK cells, but not that of Ccr5(-/-) CIK cells or Ccr5(+/+) CIK cells treated with the CCR5 antagonist Maraviroc. Individual tDCs contacted Ccr5(+/+) CIK cells more frequently and lengthily than with Ccr5(-/-) CIK cells. Consequently, tDCs increased the antitumor activity of Ccr5(+/+) CIK cells in vitro and in vivo, but did not increase that of Ccr5(-/-) CIK cells. Taken together, our data provide insight into the mechanism of CIK cell activation by tDCs at the single-cell level.


Crystal structure of YrrB: a TPR protein with an unusual peptide-binding site.

  • Dohyun Han‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

YrrB is a hypothetical protein containing a tetratricopeptide repeat (TPR) domain from a Gram-positive bacterium, Bacillus subtilis. We determined YrrB structure in the C2 space group to 2.5A resolution, which is the first TPR structure of the Gram-positive bacterium B. subtilis. In contrast to other known TPR structures, the concave surface of the YrrB TPR domain is composed of the putative peptide-binding pocket lined with positively-charged residues. This unique charge distribution reveals that YrrB can interact with partner proteins via an unusual TPR-mediated interaction mode, compared to that of other TPR-containing structures. Functional annotation using genomics analysis suggested that YrrB may be an interacting mediator in the complex formation among RNA sulfuration components. No proteins containing a TPR domain have been identified in the biosynthesis of sulfur-containing biomolecules. Thus, YrrB could play a new role as a connecting module among those proteins in the conserved gene cluster for RNA sulfuration.


Nuclear Entry of CRTC1 as Druggable Target of Acquired Pigmentary Disorder.

  • Cheong-Yong Yun‎ et al.
  • Theranostics‎
  • 2019‎

Rationale: SOX10 (SRY-related HMG-box 10) and MITF-M (microphthalmia-associated transcription factor M) restrict the expression of melanogenic genes, such as TYR (tyrosinase), in melanocytes. DACE (diacetylcaffeic acid cyclohexyl ester) inhibits melanin production in α-MSH (α-melanocyte stimulating hormone)-activated B16-F0 melanoma cells. In this study, we evaluated the antimelanogenic activity of DACE in vivo and elucidated the molecular basis of its action. Methods: We employed melanocyte cultures and hyperpigmented skin samples for pigmentation assays, and applied chromatin immunoprecipitation, immunoblotting, RT-PCR or siRNA-based knockdown for mechanistic analyses. Results: Topical treatment with DACE mitigated UV-B-induced hyperpigmentation in the skin with attenuated expression of MITF-M and TYR. DACE also inhibited melanin production in α-MSH- or ET-1 (endothelin 1)-activated melanocyte cultures. As a mechanism, DACE blocked the nuclear import of CRTC1 (CREB-regulated co-activator 1) in melanocytes. DACE resultantly inhibited SOX10 induction, and suppressed the transcriptional abilities of CREB/CRTC1 heterodimer and SOX10 at MITF-M promoter, thereby ameliorating facultative melanogenesis. Furthermore, this study unveiled new issues in melanocyte biology that i) KPNA1 (Impα5) escorted CRTC1 as a cargo across the nuclear envelope, ii) SOX10 was inducible in the melanogenic process, and iii) CRTC1 could direct SOX10 induction at the transcription level. Conclusion: We propose the targeting of CRTC1 as a unique strategy in the treatment of acquired pigmentary disorders.


STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial.

  • Matthew J Reilley‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2018‎

The Janus kinase (JAK) and signal transduction and activation of transcription (STAT) signaling pathway is an attractive target in multiple cancers. Activation of the JAK-STAT pathway is important in both tumorigenesis and activation of immune responses. In diffuse large B-cell lymphoma (DLBCL), the transcription factor STAT3 has been associated with aggressive disease phenotype and worse overall survival. While multiple therapies inhibit upstream signaling, there has been limited success in selectively targeting STAT3 in patients. Antisense oligonucleotides (ASOs) represent a compelling therapeutic approach to target difficult to drug proteins such as STAT3 through of mRNA targeting. We report the evaluation of a next generation STAT3 ASO (AZD9150) in a non-Hodgkin's lymphoma population, primarily consisting of patients with DLBCL.


NPCARE: database of natural products and fractional extracts for cancer regulation.

  • Hwanho Choi‎ et al.
  • Journal of cheminformatics‎
  • 2017‎

Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified.


Enhanced Potency of GalNAc-Conjugated Antisense Oligonucleotides in Hepatocellular Cancer Models.

  • Youngsoo Kim‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Antisense oligonucleotides (ASOs) are a novel therapeutic approach to target difficult-to-drug protein classes by targeting their corresponding mRNAs. Significantly enhanced ASO activity has been achieved by the targeted delivery of ASOs to selected tissues. One example is the targeted delivery of ASOs to hepatocytes, achieved with N-acetylgalactosamine (GalNAc) conjugation to ASO, which results in selective uptake by asialoglycoprotein receptor (ASGR). Here we have evaluated the potential of GalNAc-conjugated ASOs as a therapeutic approach to targeting difficult-to-drug pathways in hepatocellular carcinoma (HCC). The activity of GalNAc-conjugated ASOs was superior to that of the unconjugated parental ASO in ASGR (+) human HCC cells in vitro, but not in ASGR (-) cells. Both human- and mouse-derived HCC displayed reduced levels of ASGR, however, despite this, GalNAc-conjugated ASOs showed a 5- to 10-fold increase in potency in tumors. Systemically administered GalNAc-conjugated ASOs demonstrated both enhanced antisense activity and antitumor activity in the diethylnitrosamine-induced HCC tumor model. Finally, GalNAc conjugation enhanced ASO activity in human circulating tumor cells from HCC patients, demonstrating the potential of this approach in primary human HCC tumor cells. Taken together, these results provide a strong rationale for a potential therapeutic use of GalNAc-conjugated ASOs for the treatment of HCC.


Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus.

  • Jeongjin Kim‎ et al.
  • Neuron‎
  • 2017‎

Basal ganglia (BG) circuits orchestrate complex motor behaviors predominantly via inhibitory synaptic outputs. Although these inhibitory BG outputs are known to reduce the excitability of postsynaptic target neurons, precisely how this change impairs motor performance remains poorly understood. Here, we show that optogenetic photostimulation of inhibitory BG inputs from the globus pallidus induces a surge of action potentials in the ventrolateral thalamic (VL) neurons and muscle contractions during the post-inhibitory period. Reduction of the neuronal population with this post-inhibitory rebound firing by knockout of T-type Ca2+ channels or photoinhibition abolishes multiple motor responses induced by the inhibitory BG input. In a low dopamine state, the number of VL neurons showing post-inhibitory firing increases, while reducing the number of active VL neurons via photoinhibition of BG input, effectively prevents Parkinson disease (PD)-like motor symptoms. Thus, BG inhibitory input generates excitatory motor signals in the thalamus and, in excess, promotes PD-like motor abnormalities. VIDEO ABSTRACT.


LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma.

  • Yan Xu‎ et al.
  • Molecular cancer‎
  • 2019‎

PVT1 has emerged as an oncogene in many tumor types. However, its role in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) is unknown. The aim of this study was to assess the role of PVT1 in BE/EAC progression and uncover its therapeutic value against EAC.


Interferon regulatory factor 4 as a therapeutic target in adult T-cell leukemia lymphoma.

  • Daniel A Rauch‎ et al.
  • Retrovirology‎
  • 2020‎

Adult T-cell leukemia lymphoma (ATLL) is a chemotherapy-resistant malignancy with a median survival of less than one year that will afflict between one hundred thousand and one million individuals worldwide who are currently infected with human T-cell leukemia virus type 1. Recurrent somatic mutations in host genes have exposed the T-cell receptor pathway through nuclear factor κB to interferon regulatory factor 4 (IRF4) as an essential driver for this malignancy. We sought to determine if IRF4 represents a therapeutic target for ATLL and to identify downstream effectors and biomarkers of IRF4 signaling in vivo.


Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function.

  • Flurin Item‎ et al.
  • Nature communications‎
  • 2017‎

Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.


Selective antisense oligonucleotide inhibition of human IRF4 prevents malignant myeloma regeneration via cell cycle disruption.

  • Phoebe K Mondala‎ et al.
  • Cell stem cell‎
  • 2021‎

In multiple myeloma, inflammatory and anti-viral pathways promote disease progression and cancer stem cell generation. Using diverse pre-clinical models, we investigated the role of interferon regulatory factor 4 (IRF4) in myeloma progenitor regeneration. In a patient-derived xenograft model that recapitulates IRF4 pathway activation in human myeloma, we test the effects of IRF4 antisense oligonucleotides (ASOs) and identify a lead agent for clinical development (ION251). IRF4 overexpression expands myeloma progenitors, while IRF4 ASOs impair myeloma cell survival and reduce IRF4 and c-MYC expression. IRF4 ASO monotherapy impedes tumor formation and myeloma dissemination in xenograft models, improving animal survival. Moreover, IRF4 ASOs eradicate myeloma progenitors and malignant plasma cells while sparing normal human hematopoietic stem cell development. Mechanistically, IRF4 inhibition disrupts cell cycle progression, downregulates stem cell and cell adhesion transcript expression, and promotes sensitivity to myeloma drugs. These findings will enable rapid clinical development of selective IRF4 inhibitors to prevent myeloma progenitor-driven relapse.


Moesin (MSN) as a Novel Proteome-Based Diagnostic Marker for Early Detection of Invasive Bladder Urothelial Carcinoma in Liquid-Based Cytology.

  • Jeong Hwan Park‎ et al.
  • Cancers‎
  • 2020‎

Bladder urothelial carcinoma (BUC) is the most lethal malignancy of the urinary tract. Treatment for the disease highly depends on the invasiveness of cancer cells. Therefore, a predictive biomarker needs to be identified for invasive BUC. In this study, we employed proteomics methods on urine liquid-based cytology (LBC) samples and a BUC cell line library to determine a novel predictive biomarker for invasive BUC. Furthermore, an in vitro three-dimensional (3D) invasion study for biological significance and diagnostic validation through immunocytochemistry (ICC) were also performed. The proteomic analysis suggested moesin (MSN) as a potential biomarker to predict the invasiveness of BUC. The in vitro 3D invasion study showed that inhibition of MSN significantly decreased invasiveness in BUC cell lines. Further validation using ICC ultimately confirmed moesin (MSN) as a potential biomarker to predict the invasiveness of BUC (p = 0.023). In conclusion, we suggest moesin as a potential diagnostic marker for early detection of BUC with invasion in LBC and as a potential therapeutic target.


Latent class analysis of psychotic-affective disorders with data-driven plasma proteomics.

  • Sang Jin Rhee‎ et al.
  • Translational psychiatry‎
  • 2023‎

Data-driven approaches to subtype transdiagnostic samples are important for understanding heterogeneity within disorders and overlap between disorders. Thus, this study was conducted to determine whether plasma proteomics-based clustering could subtype patients with transdiagnostic psychotic-affective disorder diagnoses. The study population included 504 patients with schizophrenia, bipolar disorder, and major depressive disorder and 160 healthy controls, aged 19 to 65 years. Multiple reaction monitoring was performed using plasma samples from each individual. Pathologic peptides were determined by linear regression between patients and healthy controls. Latent class analysis was conducted in patients after peptide values were stratified by sex and divided into tertile values. Significant demographic and clinical characteristics were determined for the latent clusters. The latent class analysis was repeated when healthy controls were included. Twelve peptides were significantly different between the patients and healthy controls after controlling for significant covariates. Latent class analysis based on these peptides after stratification by sex revealed two distinct classes of patients. The negative symptom factor of the Brief Psychiatric Rating Scale was significantly different between the classes (t = -2.070, p = 0.039). When healthy controls were included, two latent classes were identified, and the negative symptom factor of the Brief Psychiatric Rating Scale was still significant (t = -2.372, p = 0.018). In conclusion, negative symptoms should be considered a significant biological aspect for understanding the heterogeneity and overlap of psychotic-affective disorders.


Purification of the full-length, membrane-associated form of the antiviral enzyme viperin utilizing nanodiscs.

  • Ayesha M Patel‎ et al.
  • Scientific reports‎
  • 2022‎

Viperin is a radical S-adenosylmethionine enzyme that catalyzes the formation of the antiviral ribonucleotide, 3'-deoxy-3',4'-didehydroCTP. The enzyme is conserved across all kingdoms of life, and in higher animals viperin is localized to the ER-membrane and lipid droplets through an N-terminal extension that forms an amphipathic helix. Evidence suggests that the N-terminal extension plays an important role in viperin's interactions with other membrane proteins. These interactions serve to modulate the activity of various other enzymes that are important for viral replication and constitute another facet of viperin's antiviral properties, distinct from its catalytic activity. However, the full-length form of the enzyme, which has proved refractory to expression in E. coli, has not been previously purified. Here we report the purification of the full-length form of viperin from HEK293T cells transfected with viperin. The purification method utilizes nanodiscs to maintain the protein in its membrane-bound state. Unexpectedly, the enzyme exhibits significantly lower catalytic activity once purified, suggesting that interactions with other ER-membrane components may be important to maintain viperin's activity.


Adsorption behavior of furan at Ge(100) surface.

  • Jeong-Woo Nam‎ et al.
  • Scientific reports‎
  • 2023‎

The adsorption behavior of furan on the Ge(100) surface was studied using a combination of high-resolution photoemission spectroscopy (HRPES) and density functional theory (DFT) calculations. We identified the two adsorption species produced by the [4 + 2] cycloaddition and deoxygenation reactions of furan with the Ge(100) surface in a ratio of approximately 76:24 at the surveyed coverages, via an analysis of the binding energies and relative area proportions of all the peaks in the C 1s and O 1s core-level spectra. The DFT simulation results revealed that the [4 + 2] cycloaddition and deoxygenation adducts are thermodynamically preferred by the reaction of furan with the Ge(100) surface compared with others, which is consistent with the HRPES results. The findings will further our understanding of the surface reactions of five-membered heterocyclic molecules.


Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry.

  • Sungyoon Moon‎ et al.
  • Scientific reports‎
  • 2014‎

The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: