Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 108 papers

Pharmacological properties of JTE-052: a novel potent JAK inhibitor that suppresses various inflammatory responses in vitro and in vivo.

  • Atsuo Tanimoto‎ et al.
  • Inflammation research : official journal of the European Histamine Research Society ... [et al.]‎
  • 2015‎

To evaluate the pharmacological properties of JTE-052, a novel Janus kinase (JAK) inhibitor.


A novel role for adipose ephrin-B1 in inflammatory response.

  • Takuya Mori‎ et al.
  • PloS one‎
  • 2013‎

Ephrin-B1 (EfnB1) was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity.


Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction.

  • Chikara Komiya‎ et al.
  • PloS one‎
  • 2016‎

Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.


Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor γ and C/EBPα.

  • Satomi Yogosawa‎ et al.
  • Diabetes‎
  • 2013‎

We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention.


The radioprotective 105/MD-1 complex contributes to diet-induced obesity and adipose tissue inflammation.

  • Yasuharu Watanabe‎ et al.
  • Diabetes‎
  • 2012‎

Recent accumulating evidence suggests that innate immunity is associated with obesity-induced chronic inflammation and metabolic disorders. Here, we show that a Toll-like receptor (TLR) protein, radioprotective 105 (RP105)/myeloid differentiation protein (MD)-1 complex, contributes to high-fat diet (HFD)-induced obesity, adipose tissue inflammation, and insulin resistance. An HFD dramatically increased RP105 mRNA and protein expression in stromal vascular fraction of epididymal white adipose tissue (eWAT) in wild-type (WT) mice. RP105 mRNA expression also was significantly increased in the visceral adipose tissue of obese human subjects relative to nonobese subjects. The RP105/MD-1 complex was expressed by most adipose tissue macrophages (ATMs). An HFD increased RP105/MD-1 expression on the M1 subset of ATMs that accumulate in eWAT. Macrophages also acquired this characteristic in coculture with 3T3-L1 adipocytes. RP105 knockout (KO) and MD-1 KO mice had less HFD-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance compared with wild-type (WT) and TLR4 KO mice. Finally, the saturated fatty acids, palmitic and stearic acids, are endogenous ligands for TLR4, but they did not activate RP105/MD-1. Thus, the RP105/MD-1 complex is a major mediator of adipose tissue inflammation independent of TLR4 signaling and may represent a novel therapeutic target for obesity-associated metabolic disorders.


Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood.

  • Xunmei Yuan‎ et al.
  • Nature communications‎
  • 2018‎

The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α-dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity.


Obesity and abnormal glucose tolerance in offspring of diabetic mothers: A systematic review and meta-analysis.

  • Maki Kawasaki‎ et al.
  • PloS one‎
  • 2018‎

Rising prevalence of childhood obesity and type 2 diabetes mellitus (T2DM) is an emerging public health issue.


Sarcopenic obesity assessed using dual energy X-ray absorptiometry (DXA) can predict cardiovascular disease in patients with type 2 diabetes: a retrospective observational study.

  • Tatsuya Fukuda‎ et al.
  • Cardiovascular diabetology‎
  • 2018‎

Sarcopenic obesity, defined as reduced skeletal muscle mass and power with increased adiposity, was reported to be associated with cardiovascular disease risks in previous cross-sectional studies. Whole body dual-energy X-ray absorptiometry (DXA) can simultaneously evaluate both fat and muscle mass, therefore, whole body DXA may be suitable for the diagnosis of sarcopenic obesity. However, little is known regarding whether sarcopenic obesity determined using whole body DXA could predict incident cardiovascular disease (CVD). The aim of this study was to investigate the impact of sarcopenic obesity on incident CVD in patients with type 2 diabetes.


Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: A possible role of SGLT2 in mesangial cells.

  • Toshinobu Maki‎ et al.
  • Scientific reports‎
  • 2019‎

Several clinical studies have shown the beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on diabetic nephropathy. The underlying mechanisms are not fully understood. We found that administration of canagliflozin at a low dose (0.01 mg/kg/day) did not affect either blood glucose levels or glycosuria, but it improved albuminuria and mesangial expansion in db/db mice to a similar extent as at a high dose (3.0 mg/kg/day) that lowered blood glucose levels. This indicated the existence of a tubular SGLT2-independent reno-protective mechanism. Here we focused on the potential role of SGLT2 in mesangial cells (MCs). Western blot analysis revealed the expression of SGLT2 in cultured mouse MCs. Exposure of MCs to high glucose levels for 72 h significantly increased the expression of SGLT2. Canagliflozin or ipragliflozin (both 100 nM) treatment inhibited glucose consumption in the medium under high-glucose conditions but not under normal-glucose conditions. Furthermore, canagliflozin inhibited high-glucose-induced activation of the protein kinase C (PKC)-NAD(P)H oxidase pathway and increases in reactive oxygen species (ROS) production. Thus, the inhibition of mesangial SGLT2 may cause an inhibition of PKC activation and ROS overproduction in diabetic nephropathy, and this may at least in part account for the reno-protective effect of SGLT2 inhibitors.


Gender difference in the impact of gynoid and android fat masses on the progression of hepatic steatosis in Japanese patients with type 2 diabetes.

  • Ryotaro Bouchi‎ et al.
  • BMC obesity‎
  • 2017‎

Increased visceral adiposity is strongly associated with non-alcoholic fatty liver disease (NAFLD). However, little attention has been paid to the association between the change in subcutaneous adipose mass and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to investigate whether increased subcutaneous adipose tissue (gynoid fat mass) could be protective against the progression of NAFLD in Japanese patients with type 2 diabetes.


Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance.

  • Yasutaka Miyachi‎ et al.
  • Cell reports‎
  • 2017‎

Obesity promotes infiltration of inflammatory cells into various tissues, leading to parenchymal and stromal cell interaction and development of cellular and organ dysfunction. Liver sinusoidal endothelial cells (LSECs) are the first cells that contact portal blood cells and substances in the liver, but their functions in the development of obesity-associated glucose metabolism remain unclear. Here, we find that LSECs are involved in obesity-associated accumulation of myeloid cells via VLA-4-dependent cell-cell adhesion. VLA-4 blockade in mice fed a high-fat diet attenuated myeloid cell accumulation in the liver to improve hepatic inflammation and systemic glucose intolerance. Ex vivo studies further show that cell-cell contact between intrahepatic leukocytes and parenchymal hepatocytes induces gluconeogenesis via a Notch-dependent pathway. These findings suggest that cell-cell interaction between parenchymal and stromal cells regulates hepatic glucose metabolism and offers potential strategies for treatment or prevention of obesity-associated glucose intolerance.


Ascorbic acid during the suckling period is required for proper DNA demethylation in the liver.

  • Kenichi Kawahori‎ et al.
  • Scientific reports‎
  • 2020‎

Ascorbic acid (AA, vitamin C) serves as a cofactor for ten-eleven translocation (TET) enzymes and induces DNA demethylation in vitro. However, its role in DNA demethylation in vivo remains unclear. We previously reported that DNA demethylation in the mouse liver was enhanced during the suckling period. Therefore, we hypothesized that DNA demethylation is enhanced in an AA-dependent manner during the suckling period. To examine our hypothesis, we employed wild-type (WT) mice, which synthesize AA, and senescence marker protein-30/gluconolactonase (SMP30/GNL) knockout (KO) mice, which cannot synthesize AA, and analyzed the DNA methylation status in the livers of offspring in both the suckling period and adulthood. SMP30/GNL KO offspring showed DNA hypermethylation in the liver possibly due to low plasma and hepatic AA levels during the suckling period despite the administration of rescue-dose AA to dams. Furthermore, DNA hypermethylation of the fibroblast growth factor 21 gene (Fgf21), a PPARα target gene, persisted into adulthood. In contrast, a high-dose AA administration to SMP30/GNL KO dams during the lactation period restored DNA demethylation in the livers of offspring. Even though a slight increase was observed in plasma AA levels with the administration of rescue-dose AA to WT dams during the gestation and lactation periods, DNA demethylation in the livers of offspring was minimally enhanced. The present results demonstrate that AA intake during the suckling period is required for proper DNA demethylation in the liver.


Plasticity of histone modifications around Cidea and Cidec genes with secondary bile in the amelioration of developmentally-programmed hepatic steatosis.

  • Jeenat Ferdous Urmi‎ et al.
  • Scientific reports‎
  • 2019‎

We recently reported that a treatment with tauroursodeoxycholic acid (TUDCA), a secondary bile acid, improved developmentally-deteriorated hepatic steatosis in an undernourishment (UN, 40% caloric restriction) in utero mouse model after a postnatal high-fat diet (HFD). We performed a microarray analysis and focused on two genes (Cidea and Cidec) because they are enhancers of lipid droplet (LD) sizes in hepatocytes and showed the greatest up-regulation in expression by UN that were completely recovered by TUDCA, concomitant with parallel changes in LD sizes. TUDCA remodeled developmentally-induced histone modifications (dimethylation of H3K4, H3K27, or H3K36), but not DNA methylation, around the Cidea and Cidec genes in UN pups only. Changes in these histone modifications may contribute to the markedly down-regulated expression of Cidea and Cidec genes in UN pups, which was observed in the alleviation of hepatic fat deposition, even under HFD. These results provide an insight into the future of precision medicine for developmentally-programmed hepatic steatosis by targeting histone modifications.


Aberrant activation of bone marrow Ly6C high monocytes in diabetic mice contributes to impaired glucose tolerance.

  • Yosuke Ikeda‎ et al.
  • PloS one‎
  • 2020‎

Accumulating evidence indicates that diabetes and obesity are associated with chronic low-grade inflammation and multiple organ failure. Tissue-infiltrated inflammatory M1 macrophages are aberrantly activated in these conditions and contribute to hyperglycemia and insulin resistance. However, it is unclear at which stage these cells become aberrantly activated: as precursor monocytes in the bone marrow or as differentiated macrophages in tissues. We examined the abundance, activation state, and function of bone marrow-derived Ly6Chigh monocytes in mice with diabetes and/or obesity. Ly6Chigh monocytes were FACS-purified from six groups of male mice consisting of type 2 diabetes model db/db mice, streptozotocin (STZ) induced insulin depletion mice, high fat diet (HFD) induced obesity mice and each control mice. Ly6Chigh monocytes were then analyzed for the expression of inflammation markers by qRT-PCR. In addition, bone marrow-derived Ly6Chigh monocytes from db/+ and db/db mice were fluorescently labeled and injected into groups of db/db recipient mice. Cell trafficking to tissues and levels of markers were examined in the recipient mice. The expression of many inflammation-related genes was significantly increased in Ly6Chigh monocytes from db/db mice, compared with the control. Bone marrow-derived Ly6Chigh monocytes isolated from db/db mice, but not from db/+ mice, displayed prominent infiltration into peripheral tissues at 1 week after transfer into db/db mice. The recipients of db/db Ly6Chigh monocytes also exhibited significantly increased serum glucose levels and worsening tolerance compared with mice receiving db/+ Ly6Chigh monocytes. These novel observations suggest that activated Ly6Chigh monocytes may contribute to the glucose intolerance observed in diabetes.


Solid-type poorly differentiated adenocarcinoma of the stomach: Deficiency of mismatch repair and SWI/SNF complex.

  • Shinichi Tsuruta‎ et al.
  • Cancer science‎
  • 2020‎

ARID1A, one of the subunits in SWI/SNF chromatin remodeling complex, is frequently mutated in gastric cancers with microsatellite instability (MSI). The most frequent MSI in solid-type poorly differentiated adenocarcinoma (PDA) has been reported, but the SWI/SNF complex status in solid-type PDA is still largely unknown. We retrospectively analyzed 54 cases of solid-type PDA for the expressions of mismatch repair (MMR) proteins (MLH1, PMS2, MSH2, and MSH6), SWI/SNF complex subunits (ARID1A, INI1, BRG1, BRM, BAF155, and BAF170) and EBER, and mutations in KRAS and BRAF. We analyzed 40 cases of another histological type of gastric cancer as a control group. The solid-type PDAs showed coexisting glandular components (76%), MMR deficiency (39%), and complete/partial loss of ARID1A (31%/7%), INI1 (4%/4%), BRG1 (48%/30%), BRM (33%/33%), BAF155 (13%/41%), and BAF170 (6%/2%), EBER positivity (4%), KRAS mutation (2%), and BRAF mutation (2%). Compared to the control group, MMR deficiency and losses of ARID1A, BRG1, BRM, and BAF155 were significantly frequent in solid-type PDAs. Mismatch repair deficiency was associated with the losses of ARID1A, BRG1, and BAF155 in solid-type PDAs. In the MMR-deficient group, solid components showed significantly more frequent losses of ARID1A, BRG1, BRM, and BAF155 compared to glandular components (P = .0268, P = .0181, P = .0224, and P = .0071, respectively). In the MMR-proficient group, solid components showed significantly more frequent loss of BRG1 compared to glandular components (P = .012). In conclusion, solid-type PDAs showed frequent losses of MMR proteins and the SWI/SNF complex. We suggest that loss of the SWI/SNF complex could induce a morphological shift from differentiated-type adenocarcinoma to solid-type PDA.


Mucosa-associated gut microbiota reflects clinical course of ulcerative colitis.

  • Yuichiro Nishihara‎ et al.
  • Scientific reports‎
  • 2021‎

This longitudinal study was designed to elucidate whether gut microbiota is associated with relapse and treatment response in ulcerative colitis (UC) patients. Fifty-one patients with UC were enrolled between 2012 and 2017, and followed up through 2020. Colon mucosal biopsy were obtained at enrollment, and 16S ribosomal RNA sequencing was performed using extracted RNA. Of the 51 patients, 24 were in remission and 27 had active UC at enrollment. Of the 24 patients in remission, 17 maintained remission and 7 developed relapse during follow-up. The 7 patients with relapse showed lower diversity, with a lower proportion of Clostridiales (p = 0.0043), and a higher proportion of Bacteroides (p = 0.047) at enrollment than those without relapse. The 27 patients with active UC were classified into response (n = 6), refractory (n = 13), and non-response (n = 8) groups according to their treatment response in 6 months. The refractory and non-response groups showed lower diversity with a lower proportion of Prevotella (p = 0.048 and 0.043) at enrollment than the response group. This study is the first demonstration that reduced diversity and particular microbes are associated with the later clinical course of relapse events and treatment response in UC.


Discriminant equation using mucosally expressed cytokines and transcription factor for making definite diagnosis of inflammatory bowel disease unclassified.

  • Hiroaki Okuno‎ et al.
  • BMC gastroenterology‎
  • 2021‎

The pathological conditions of UC and CD involved in inflammatory bowel disease-unclassified (IBD-U), UC with primary sclerosing cholangitis (PSC-UC), and UC with autoimmune pancreatitis type 2 (AIP-UC) remain unclear. Therefore, it is difficult to decide the appropriate treatments for these subtypes of UC. Our aim was to examine whether the discriminant equation using the mucosally expressed mediators designed as our previous study for IBD, could characterize IBD-U, PSC-UC, or AIP-UC.


Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes.

  • Seiichi Yano‎ et al.
  • Nature communications‎
  • 2022‎

Establishment of the DNA methylation landscape of mammalian oocytes, mediated by the DNMT3A-DNMT3L complex, is crucial for reproduction and development. In mouse oocytes, high levels of DNA methylation occur exclusively in the transcriptionally active regions, with moderate to low levels of methylation in other regions. Histone H3K36me3 mediates the high levels of methylation in the transcribed regions; however, it is unknown which histone mark guides the methylation in the other regions. Here, we show that, in mouse oocytes, H3K36me2 is highly enriched in the X chromosome and is broadly distributed across all autosomes. Upon H3K36me2 depletion, DNA methylation in moderately methylated regions is selectively affected, and a methylation pattern unique to the X chromosome is switched to an autosome-like pattern. Furthermore, we find that simultaneous depletion of H3K36me2 and H3K36me3 results in global hypomethylation, comparable to that of DNMT3A depletion. Therefore, the two histone marks jointly provide the chromatin platform essential for guiding DNMT3A-dependent DNA methylation in mouse oocytes.


Lateralizing Asymmetry of Adrenal Imaging and Adrenal Vein Sampling in Patients With Primary Aldosteronism.

  • Norio Wada‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

In patients with primary aldosteronism (PA), it remains unclear whether aldosterone-producing adenomas are likely to develop in the left or right adrenal gland.


Ipragliflozin-induced adipose expansion inhibits cuff-induced vascular remodeling in mice.

  • Kentaro Mori‎ et al.
  • Cardiovascular diabetology‎
  • 2019‎

Perivascular adipose tissue (PVAT) plays a critical role in the pathogenesis of cardiovascular disease. It is unclear whether inhibition of sodium glucose cotransporter 2 (SGLT2) in subjects with type 2 diabetes (T2DM) could affect PVAT characters, and whether the SGLT2 inhibitors-induced changes of adipose tissue, especially the alternation of adipose tissue-derived secretory factors, affect vascular pathophysiology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: