Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies.

  • Tobias Eisenberger‎ et al.
  • PloS one‎
  • 2013‎

Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.


Zonisamide-responsive myoclonus in SEMA6B-associated progressive myoclonic epilepsy.

  • Rebecca Herzog‎ et al.
  • Annals of clinical and translational neurology‎
  • 2021‎

We present a female patient in her early twenties with global development delay, progressive ataxia, epilepsy, and myoclonus caused by a stop mutation in the SEMA6B gene. Truncating DNA variants located in the last exon of SEMA6B have recently been identified as a cause of autosomal dominant progressive myoclonus epilepsy. In many cases, myoclonus in the context of progressive myoclonic epilepsy is refractory to medical treatment. In the present case, treatment with zonisamide caused clinical improvement, particularly of positive and negative truncal myoclonus, considerably improving patient's gait and thus mobility.


Constitutional de novo and postzygotic mutations in isolated cases of cerebral cavernous malformations.

  • Matthias Rath‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2017‎

Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can be found in sporadic or autosomal dominantly inherited forms and manifest with headaches, seizures, and hemorrhagic stroke. The precise proportion of de novo mutations in the CCM1,CCM2, and CCM3 genes remains unknown.


De Novo Variants in MAPK8IP3 Cause Intellectual Disability with Variable Brain Anomalies.

  • Konrad Platzer‎ et al.
  • American journal of human genetics‎
  • 2019‎

Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.


High mutation detection rates in cerebral cavernous malformation upon stringent inclusion criteria: one-third of probands are minors.

  • Stefanie Spiegler‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2014‎

Cerebral cavernous malformations (CCM) are prevalent vascular malformations occurring in familial autosomal dominantly inherited or isolated forms. Once CCM are diagnosed by magnetic resonance imaging, the indication for genetic testing requires either a positive family history of cavernous lesions or clinical symptoms such as chronic headaches, epilepsy, neurological deficits, and hemorrhagic stroke or the occurrence of multiple lesions in an isolated case. Following these inclusion criteria, the mutation detection rates in a consecutive series of 105 probands were 87% for familial and 57% for isolated cases. Thirty-one novel mutations were identified with a slight shift towards proportionally more CCM3 mutations carriers than previously published (CCM1: 60%, CCM2: 18%, CCM3: 22%). In-frame deletions and exonic missense variants requiring functional analyses to establish their pathogenicity were rare: An in-frame deletion within the C-terminal FERM domain of CCM1 resulted in decreased protein expression and impaired binding to the transmembrane protein heart of glass (HEG1). Notably, 20% of index cases carrying a CCM mutation were below age 10 and 33% below age 18 when referred for genetic testing. Since fulminant disease courses during the first years of life were observed in CCM1 and CCM3 mutation carriers, predictive testing of minor siblings became an issue.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: