Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Contralesional functional network reorganization of the insular cortex in diffuse low-grade glioma patients.

  • Shengyu Fang‎ et al.
  • Scientific reports‎
  • 2021‎

Diffuse low-grade gliomas (DLGGs) growing on the insular lobe induce contralesional hemispheric insular lobe compensation of damaged functioning by increasing cortical volumes. However, it remains unclear how functional networks are altered in patients with insular lobe DLGGs during functional compensation. Thirty-five patients with insular DLGGs were classified into the left (insL, n = 16) and right groups (insR, n = 19), and 33 healthy subjects were included in the control group. Resting state functional magnetic resonance imaging was used to generate functional connectivity (FC), and network topological properties were evaluated using graph theoretical analysis based on FC matrices. Network-based statistics were applied to compare differences in the FC matrices. A false discovery rate was applied to correct the topological properties. There was no difference in the FC of edges between the control and insL groups; however, the nodal shortest path length of the right insular lobe was significantly increased in the insL group compared to the control group. Additionally, FC was increased in the functional edges originating from the left insular lobe in the insR group compared to the control group. Moreover, there were no differences in topological properties between the insR and control groups. The contralesional insular lobe is crucial for network alterations. The detailed patterns of network alterations were different depending on the affected hemisphere. The observed network alterations might be associated with functional network reorganization and functional compensation.


Motor cortex gliomas induces microstructural changes of large fiber tracts revealed by TBSS.

  • Xiangdong Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Gliomas grow and invade along white matter fiber tracts. This study assessed the effects of motor cortex gliomas on the cerebral white matter fiber bundle skeleton. The motor cortex glioma group included 21 patients, and the control group comprised 14 healthy volunteers. Both groups underwent magnetic resonance imaging-based 3.0 T diffusion tensor imaging. We used tract-based spatial statistics to analyze the characteristics of white matter fiber bundles. The left and right motor cortex glioma groups were analyzed separately from the control group. Results were statistically corrected by the family-wise error rate. Compared with the controls, patients with left motor cortex gliomas exhibited significantly reduced fractional anisotropy and an increased radial diffusivity in the corpus callosum. The alterations in mean diffusivity (MD) and the axial diffusivity (AD) were widely distributed throughout the brain. Furthermore, atlas-based analysis showed elevated MD and AD in the contralateral superior fronto-occipital fasciculus. Motor cortex gliomas significantly affect white matter fiber microstructure proximal to the tumor. The range of affected white matter fibers may extend beyond the tumor-affected area. These changes are primarily related to early stage tumor invasion.


Radiomics Analysis of Postoperative Epilepsy Seizures in Low-Grade Gliomas Using Preoperative MR Images.

  • Kai Sun‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Purpose: The present study aimed to evaluate the performance of radiomics features in the preoperative prediction of epileptic seizure following surgery in patients with LGG. Methods: This retrospective study collected 130 patients with LGG. Radiomics features were extracted from the T2-weighted MR images obtained before surgery. Multivariable Cox-regression with two nested leave-one-out cross validation (LOOCV) loops was applied to predict the prognosis, and elastic net was used in each LOOCV loop to select the predictive features. Logistic models were then built with the selected features to predict epileptic seizures at two time points. Student's t-tests were then used to compare the logistic model predicted probabilities of developing epilepsy in the epilepsy and non-epilepsy groups. The t-test was used to identify features that differentiated patients with early-onset epilepsy from their late-onset counterparts. Results: Seventeen features were selected with the two nested LOOCV loops. The index of concordance (C-index) of the Cox model was 0.683, and the logistic model predicted probabilities of seizure were significantly different between the epilepsy and non-epilepsy groups at each time point. Moreover, one feature was found to be significantly different between the patients with early- or late-onset epilepsy. Conclusion: A total of 17 radiomics features were correlated with postoperative epileptic seizures in patients with LGG and one feature was a significant predictor of the time of epilepsy onset.


Association of tumor growth rates with molecular biomarker status: a longitudinal study of high-grade glioma.

  • Ziwen Fan‎ et al.
  • Aging‎
  • 2020‎

To determine the association of molecular biomarkers with tumor growth in patients with high-grade gliomas (HGGs), the tumor growth rates and molecular biomarker status in 109 patients with HGGs were evaluated. Mean tumor diameter was assessed on at least two pre-surgical T2-weighted and contrast-enhancement T1-weighted magnetic resonance images (MRIs). Tumor growth rates were calculated based on tumor volume and diameter using various methods. The association of biomarkers with increased or decreased tumor growth was calculated using linear mixed-effects models. HGGs exhibited rapid growth rates, with an equivalent volume doubling time of 63.4 days and an equivalent velocity of diameter expansion of 51.6 mm/year. The WHO grade was an independent clinical factor of eVDEs. TERT promoter mutation C250T and MGMT promoter methylation was significantly associated with tumor growth in univariable analysis but not in multivariable analysis. Molecular groups of IDH1, TERT, and 1p/19q and IDH1 and MGMT were independently associated with tumor growth. In addition, tumor enhanced area had a faster growth rate than a tumor entity in incomplete enhanced HGGs (p = 0.006). Our findings provide crucial information for the prediction of preoperative tumor growth in HGGs, and aided in the decision making for aggressive resection and adjuvant treatment strategies.


IDH mutation-specific radiomic signature in lower-grade gliomas.

  • Xing Liu‎ et al.
  • Aging‎
  • 2019‎

Unravelling the heterogeneity is the central challenge for glioma precession oncology. In this study, we extracted quantitative image features from T2-weighted MR images and revealed that the isocitrate dehydrogenase (IDH) wild type and mutant lower grade gliomas (LGGs) differed in their expression of 146 radiomic descriptors. The logistic regression model algorithm further reduced these to 86 features. The classification model could discriminate the two types in both the training and validation sets with area under the curve values of 1.0000 and 0.9932, respectively. The transcriptome-radiomic analysis revealed that these features were associated with the immune response, biological adhesion, and several malignant behaviors, all of which are consistent with biological processes that are differentially expressed in IDH wild type and IDH mutant LGGs. Finally, a prognostic signature showed an ability to stratify IDH mutant LGGs into high and low risk groups with distinctive outcomes. By extracting a large number of radiomic features, we identified an IDH mutation-specific radiomic signature with prognostic implications. This radiomic signature may provide a way to non-invasively discriminate lower-grade gliomas as with or without the IDH mutation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: