Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Prognostic value of immune related genes in lung adenocarcinoma.

  • Han Wang‎ et al.
  • Oncology letters‎
  • 2020‎

Lung cancer has the highest incidence and mortality rates of all cancers in China. Immune-related genes and immune infiltrating lymphocytes are involved in tumor growth, and in the past decade, immunotherapy has become increasingly important in the treatment of lung cancer. Using the edgeR package, differentially expressed genes and immune-related genes (DEIRGs) were identified in patients with lung adenocarcinoma (LUAD). Functional enrichment analysis of DEIRGs was performed using Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Survival-associated immune-related genes (IRGs) were selected using univariate Cox regression analysis and the prognostic model was assessed using multivariate Cox regression analysis. Overall, 273 DEIRGs were identified in LUAD, and KEGG pathway analysis of IRGs showed that 'cytokine-cytokine receptor interaction' was the most significantly enriched pathway. Furthermore, six survival associated IRGs were screened to establish a prognostic model; patients in the high risk score group had less favorable survival times, and the prognostic model was negatively associated with B cell infiltration. The present study established a prognostic model using analysis of survival-related immune-related genes, which were associated with B cell infiltration.


Decreased microRNA-768-3p expression indicates a poor prognosis in patients with breast cancer and promotes breast cancer cell viability, migration and invasion.

  • Yanhua Zhou‎ et al.
  • Oncology letters‎
  • 2021‎

Breast cancer is the most common malignancy in women and microRNA-768-3p (miR-768-3p) is abnormally expressed in hepatocellular carcinoma, non-small cell lung carcinomas and melanoma. The aim of the present study was to evaluate the prognostic value and biological function of miR-768-3p in breast cancer. The expression of miR-768-3p in tumor tissues and adjacent tissues of 116 patients with breast cancer obtained by surgery and normal breast cell lines MCF-10A and breast cancer cell lines (MCF-7, MDA-MB-231, T-47D and SK-BR-3) were detected by reverse transcription-quantitative PCR. The association between miR-768-3p expression and the clinicopathological characteristics of patients was analyzed using the χ2 test. In addition, the Kaplan-Meier method was used for survival analysis. A Cox regression model was used to examine the effect of miR-768-3p on the prognosis of patients with breast cancer. Hemocytometer cell counting and Transwell assays were used to detect the effects of miR-768-3p on the characteristics of breast cancer cells. The target genes of miR-768-3p in breast cancer were identified by bioinformatics software and detected by luciferase reporter assay. Compared with normal tissues and normal breast cancer cells, miR-768-3p was significantly decreased in breast cancer tissues and cancer cells (P<0.001). The reduction in miR-768-3p was significantly associated with lymph node metastasis (P=0.040), Tumor Node Metastasis stage (P=0.035), and cancer subtype (P=0.008). In addition, patients with low miR-768-3p expression had a shorter overall survival time (log-rank P=0.022) compared with those with high expression and miR-768-3p may be a potential prognostic marker (hazard ratio=4.637; 95% confidence interval=1.296-16.597; P=0.018). When transfected with miR-768-3p inhibitor, cell viability, migration and invasion were significantly promoted compared with the control group (P<0.05). In addition, eukaryotic translation initiation factor 4E (eIF4E) was the target gene of miR-768-3p in breast cancer. All experiments confirmed that miR-768-3p, a tumor suppressor, inhibited the viability, migration and invasion of breast cancer cells through eIF4E. miR-768-3p may be a potential prognostic marker of breast cancer and may participate in the progression of breast cancer.


7-dehydrocholesterol suppresses melanoma cell proliferation and invasion via Akt1/NF-κB signaling.

  • Jia Liu‎ et al.
  • Oncology letters‎
  • 2020‎

Melanoma is the most lethal cutaneous cancer with a high metastatic rate worldwide, causing ~55,500 deaths annually. Although the selective B-Raf oncogene serine/threonine-kinase (BRAF) inhibitors, dabrafenib and vemurafenib, have been approved for the treatment of BRAF-mutant metastatic melanoma, the 5-year survival rate remains unfavorable due to acquired therapy resistance. Therefore, it is of great importance to develop alternative therapeutic drugs and uncover their mechanisms for the treatment of melanoma. 7-dehydrocholesterol (7-DHC) has been demonstrated to inhibit melanoma, but the mechanism is unclear. Therefore, the present study aimed to elucidate the mechanisms of the inhibitory effect of 7-DHC in melanoma cells via analyzing the proliferation, migration, apoptosis, cell cycle and transcriptional sequencing of melanoma cells treated with 7-DHC, as well as constructing a gene signature according to public data of patients with melanoma. In the present study, 7-DHC, the precursor of vitamin D3, was able to induce apoptosis and inhibit cell proliferation and invasion of melanoma cells in a dose-dependent manner. RNA sequencing of melanoma cells treated with different concentrations of 7-DHC revealed that, compared with untreated melanoma cells, 65 genes were downregulated, and genes involved in the regulation of NF-ĸB import into the nucleus and NF-ĸB signaling were significantly repressed. Consistently, the Akt kinase family was one of most common somatic mutation hotspots in patients with melanoma according to The Cancer Genome Atlas enrichment analysis. Furthermore, 7-DHC decreased the phosphorylation of Akt1-Ser473 rather than that of MEK1, and the decreased phosphorylation of Akt1 subsequently inhibited the translocation of free RELA proto-oncogene NF-κB subunit to the nucleus. Finally, by intersecting downregulated genes by 7-DHC treatment and upregulated genes in patients with melanoma, a 7-DHC gene signature was identified, which was negatively associated with the prognosis. Overall, the present results demonstrated that 7-DHC suppressed melanoma cell proliferation and invasion via the Akt1/NF-ĸB signaling pathway, and 7-DHC key target genes were negatively associated with the prognosis. These findings highlight the potential application of 7-DHC for the treatment of melanoma in the future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: