Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53.

  • Ying Ni‎ et al.
  • Human molecular genetics‎
  • 2012‎

Cowden syndrome (CS), a Mendelian autosomal-dominant disorder, predisposes to breast, thyroid and other cancers. Germline mutations in phosphatase and tensin homolog (PTEN) have been recently reported in 23% of a large series of classic CS. Here, we validated our small (n = 10) pilot study in a large patient series that germline variations in succinate dehydrogenase genes (SDHx) occur in 8% (49/608) of PTEN mutation-negative CS and CS-like (CSL) individuals (SDH(var+)). None of these SDHx variants was found in 700 population controls (P < 0.0001). We then found that SDHx variants also occur in 6% (26/444) of PTEN mutation-positive (PTEN(mut+)) CS/CSL individuals (PTEN(mut+)/SDH(var+)). Of 22 PTEN(mut+)/SDH(var+) females, 17 had breast cancers compared with 34/105 PTEN(mut+) (P < 0.001) or 27/47 SDH(var+) patients (P = 0.06). Notably, individuals with SDH(var+) alone had the highest thyroid cancer prevalence (24/47) compared with PTEN(mut+) patients (27/105, P = 0.002) or PTEN(mut+)/SDH(var+) carriers (6/22, P = 0.038). Patient-derived SDH(var+) lymphoblastoid cells had elevated cellular reactive oxygen species, highest in PTEN(mut+)/SDH(var+) cells, correlating with apoptosis resistance. SDH(var+) cells showed stabilized and hyperactivated hypoxia inducible factor (HIF)1α signaling. Most interestingly, we also observed the loss of steady-state p53 in the majority of SDH(var+) cells. This loss of p53 was regulated by MDM2-independent NADH quinone oxidoreductase 1-mediated protein degradation, likely due to the imbalance of flavin adenine dinucleotide/nicotinamide adenine dinucleotide in SDH(var+) cells. Our data suggest the potential regulation of HIF1α, p53 and PTEN signaling by mitochondrial metabolism in CS/CSL tumorigenesis. Together, our findings suggest the importance of considering SDHx as candidate predisposing and modifier genes for CS/CSL-related malignancy risks, and a mechanism which suggests ways of therapeutic reversal or prevention.


Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation.

  • Wanfeng Yu‎ et al.
  • Human molecular genetics‎
  • 2015‎

Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias.


Thyroglobulin in Metastatic Thyroid Cancer: Culprit or Red Herring?

  • Lamis Yehia‎ et al.
  • American journal of human genetics‎
  • 2017‎

No abstract available


Cowden syndrome-associated germline succinate dehydrogenase complex subunit D (SDHD) variants cause PTEN-mediated down-regulation of autophagy in thyroid cancer cells.

  • Wanfeng Yu‎ et al.
  • Human molecular genetics‎
  • 2017‎

Thyroid cancer is a major component cancer of Cowden syndrome (CS), a disorder typically associated with germline mutations in PTEN. Germline variants in succinate dehydrogenase genes (SDHx) co-occurring with PTEN germline mutations confer a 2-fold increased prevalence (OR 2.7) of thyroid cancer compared to PTEN-associated CS but 50% decreased prevalence (OR 0.54) of thyroid cancer compared to SDHx-associated CS. We have previously shown that CS-associated SDHD variants G12S and H50R induce PTEN oxidation and nuclear accumulation in thyroid cancer. Our current study shows that SDHD-G12S and -H50R variants cause down-regulation of autophagy, demonstrating a role for SDHD in autophagy-associated pathogenesis of differentiated thyroid cancer. These findings could explain the increased prevalence of thyroid cancer in CS patients with SDHx germline mutations compared to those with PTEN mutations alone. Importantly, we demonstrate the dependence of this process on functional wild-type PTEN with reversal of decreased autophagy after PTEN knockdown. The latter could explain the clinically observed decrease in thyroid cancer prevalence in patients with co-existent PTEN mutations and SDHx variants. We also show that SDHD-G12S/H50R promotes mono-ubiquitination of PTEN, causing its translocation into the nucleus, upregulation of AKT and consequent phosphorylation of FOXO3a. Furthermore, SDHD-G12S/H50R-mediated increase in acetylation of FOXO3a further enhances AKT-associated phosphorylation of FOXO3a. This combination of phosphorylation and acetylation of FOXO3a results in its nuclear export for degradation and consequent down-regulation of FOXO3a-target autophagy-related gene (ATG) expression. Overall, our study reveals a novel mechanism of crosstalk amongst SDHD, PTEN and autophagy pathways and their potential roles in thyroid carcinogenesis.


TET2 mutations as a part of DNA dioxygenase deficiency in myelodysplastic syndromes.

  • Carmelo Gurnari‎ et al.
  • Blood advances‎
  • 2022‎

Decrease in DNA dioxygenase activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general downregulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, whereas 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was upregulated in MDS and inversely correlated with TET2 expression in wild-type cases. Although TET2 was reduced across all age groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influenced the clinical phenotype of TET2 deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers.


AMPK Phosphorylates ZDHHC13 to Increase MC1R Activity and Suppress Melanomagenesis.

  • Yu Sun‎ et al.
  • Cancer research‎
  • 2023‎

Inherited genetic variations in the melanocortin-1 receptor (MC1R) responsible for human red hair color (RHC) variants are associated with impaired DNA damage repair and increased melanoma risk. MC1R signaling is critically dependent on palmitoylation, primarily mediated by the protein acyltransferase zinc finger DHHC-type palmitoyltransferase 13 (ZDHHC13). A better understanding of how ZDHHC13 is physiologically activated could help identify approaches to prevent melanomagenesis in redheads. Here, we report that AMP-activated protein kinase (AMPK) phosphorylates ZDHHC13 at S208 to strengthen the interaction between ZDHHC13 and MC1R-RHC, leading to enhanced MC1R palmitoylation in redheads. Consequently, phosphorylation of ZDHHC13 by AMPK increased MC1R-RHC downstream signaling. AMPK activation and MC1R palmitoylation repressed UVB-induced transformation of human melanocytes in vitro and delayed melanomagenesis in vivo in C57BL/6J-MC1R-RHC mice. The importance of AMPK to MC1R signaling was validated in human melanomas where AMPK upregulation correlated with expression of factors downstream from MC1R signaling and with prolonged patient survival. These findings suggest AMPK activation as a promising strategy to reduce melanoma risk, especially for individuals with red hair.


Copy Number Variation and Clinical Outcomes in Patients With Germline PTEN Mutations.

  • Lamis Yehia‎ et al.
  • JAMA network open‎
  • 2020‎

PTEN is among the most common autism spectrum disorder (ASD)-predisposition genes. Germline PTEN mutation carriers can develop malignant neoplasms and/or neurodevelopmental disorders such as ASD and developmental delay. Why a single gene contributes to disparate clinical outcomes, even in patients with identical PTEN mutations, remains unclear.


MC1R signaling through the cAMP-CREB/ATF-1 and ERK-NFκB pathways accelerates G1/S transition promoting breast cancer progression.

  • Vipin Shankar Chelakkot‎ et al.
  • NPJ precision oncology‎
  • 2023‎

MC1R, a G-protein coupled receptor, triggers ultraviolet light-induced melanin synthesis and DNA repair in melanocytes and is implicated in the pathogenesis of melanoma. Although widely expressed in different tissue types, its function in non-cutaneous tissue is relatively unknown. Herein, we demonstrate that disruptive MC1R variants associated with melanomagenesis are less frequently found in patients with several cancers. Further exploration revealed that breast cancer tissue shows a significantly higher MC1R expression than normal breast tissue, and knocking down MC1R significantly reduced cell proliferation in vitro and in vivo. Mechanistically, MC1R signaling through the MC1R-cAMP-CREB/ATF-1 and MC1R-ERK-NFκB axes accelerated the G1-S transition in breast cancer cells. Our results revealed a new association between MC1R and breast cancer, which could be potentially targeted therapeutically. Moreover, our results suggest that MC1R-enhancing/activating therapies should be used cautiously, as they might be pro-tumorigenic in certain contexts.


Clinical and Immunologic Features of Germline Pathogenic Variant-Positive Patients with Melanoma.

  • Alan Shen‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2024‎

Malignant melanoma represents the most lethal skin cancer with germline predispositions thought to comprise 10% to 15% of all melanoma cases. No studies to date examine the immunologic features that may differentiate survival differences between germline pathogenic variant (gPV)-positive patients with melanoma from gPV-negative patients with melanoma.


Screening immune-related blood biomarkers for DKD-related HCC using machine learning.

  • Chao Chen‎ et al.
  • Frontiers in immunology‎
  • 2024‎

Diabetes mellitus is a significant health problem worldwide, often leading to diabetic kidney disease (DKD), which may also influence the occurrence of hepatocellular carcinoma (HCC). However, the relationship and diagnostic biomarkers between DKD and HCC are unclear.


Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer.

  • Ying Ni‎ et al.
  • Endocrine-related cancer‎
  • 2015‎

Along with breast and endometrial cancers, thyroid cancer is a major component cancer in Cowden syndrome (CS). Germline variants in SDHB/C/D (SDHx) genes account for subsets of CS/CS-like cases, conferring a higher risk of breast and thyroid cancers over those with only germline PTEN mutations. To investigate whether SDHx alterations at both germline and somatic levels occur in apparently sporadic breast cancer and differentiated thyroid cancer (DTC), we analyzed SDHx genes in the following four groups: i) 48 individuals with sporadic invasive breast adenocarcinoma for germline mutation; ii) 48 (expanded to 241) DTC for germline mutation; iii) 37 pairs DTC tumor-normal tissues for germline and somatic mutation and mRNA expression levels; and iv) data from 476 patients in the Cancer Genome Atlas thyroid carcinoma dataset for validation. No germline SDHx variant was found in a pilot series of 48 breast cancer cases. As germline SDHx variants were found in our pilot of 48 thyroid cancer cases, we expanded to three series of DTC comprising a total 754 cases, and found 48 (6%) with germline SDHx variants (P<0.001 compared with 0/350 controls). In 513 tumors, we found 27 (5%) with large somatic duplications within chromosome 1 encompassing SDHC. Both papillary and follicular thyroid tumors showed consistent loss of SDHC/D gene expression (P<0.001), which is associated with earlier disease onset and higher pathological-TNM stage. Therefore, we conclude that both germline and somatic SDHx mutations/variants occur in sporadic DTC but are very rare in sporadic breast cancer, and overall loss of SDHx gene expression is a signature of DTC.


The role of adrenomedullin in the pathogenesis of gastric cancer.

  • Fuhao Qiao‎ et al.
  • Oncotarget‎
  • 2017‎

Adrenomedullin has been shown to be overexpressed in many tumors, including gastric cancer tumors; however, its mechanism of action remains unclear. In this study, we examined the role of adrenomedullin in the pathogenesis of gastric cancer. Using clinical specimens and immunohistochemistry, we found that the expression levels of adrenomedullin and its receptors are inordinately elevated as compared to the adjacent non-tumor gastric tissues. We used siRNA gene silencing, in BGC-823 gastric cancer cell lines, to target adrenomedullin genes, and found that increased adrenomedullin expression results in the proliferation of tumor cells, tumor invasion, and metastasis. Furthermore, we found that under hypoxic conditions, gastric cancer BGC-823 cells exhibit higher expression levels of adrenomedullin and various other related proteins. Our results indicate the involvement of adrenomedullin in microvessel proliferation and partially in the release of hypoxia in solid tumors. Knockdown of adrenomedullin expression, at the protein level, reduced the levels of phosphoprotein kinase B and B-cell lymphoma 2 but increased the levels of cleaved-caspase3 and Bcl 2 associated x protein (Bax). Therefore, we hypothesized siRNA targeting of adrenomedullin genes inhibits various serine/threonine kinases via a signaling pathway that induces cell apoptosis. SiRNA targeting of adrenomedullin genes and green fluorescent control vectors were used to transfect BGC-823 cells, and western blot analyses were used to detect changes in the rates of autophagy in related proteins using confocal laser scanning microscopy. No significant changes were detected. Therefore, the knockdown of adrenomedullin and its receptors may represent a novel treatment strategy for gastric cancer.


Cancer-predicting transcriptomic and epigenetic signatures revealed for ulcerative colitis in patient-derived epithelial organoids.

  • Samaneh K Sarvestani‎ et al.
  • Oncotarget‎
  • 2018‎

Ulcerative colitis (UC) is a prevalent form of inflammatory bowel disease (IBD) whose pathogenic mechanisms remain unclear. Elucidating these mechanisms is important to reduce UC symptoms and to prevent UC progression into colitis-associated colon cancer (CAC). Our goal was to develop and validate faithful, human-derived, UC models and analyze them at histologic, transcriptomic and epigenetic levels to allow mechanistic studies of UC and CAC pathogenesis. We generated patient-derived primary-organoid cultures from UC and non-IBD colonic epithelium. We phenotyped them histologically and used next-generation-sequencing approaches to profile whole transcriptomes and epigenomes of organoids and primary tissues. Tissue organization and expression of mucin 2 (MUC2) and lysozyme (LYZ) demonstrated histologic faithfulness of organoids to healthy and diseased colonic epithelium. Transcriptomic analyses showed increased expression of inflammatory pathways in UC patient-derived organoids and tissues. Profiling for active enhancers using the H3K27ac histone modification revealed UC-derived organoid enrichment for pathways indicative of gastrointestinal cancer, including S100 calcium-binding protein P (S100P), and revealed novel markers for GI cancer, including both LYZ and neuropeptide S receptor 1 (NPSR1). Immunolocalization showed increased levels of LYZ, S100P, and NPSR1 proteins in UC and CAC. In conclusion, primary colonic organoid cultures from UC and non-IBD patients can be established that faithfully represent diseased or normal colonic states. These models reveal precancerous molecular pathways that are already activated in UC. The findings demonstrate the suitability of primary organoids for dissecting UC and CAC pathogenic mechanisms and suggest new targets for therapeutic intervention.


Naturally occurring germline and tumor-associated mutations within the ATP-binding motifs of PTEN lead to oxidative damage of DNA associated with decreased nuclear p53.

  • Xin He‎ et al.
  • Human molecular genetics‎
  • 2011‎

Somatic and germline mutations in PTEN (phosphatase and tensin homolog deleted on chromosome 10) are found in sporadic cancers and Cowden syndrome patients, respectively. Recent identification of naturally occurring cancer and germline mutations within the ATP-binding motifs of PTEN (heretofore referred to as PTEN ATP-binding mutations) has revealed that these mutations disrupted the subcellular localization and tumor-suppressor activity of PTEN. However, very little is known about the underlying mechanisms of PTEN ATP-binding mutations in tumorigenesis. Here we show that these mutations impair PTEN's function both qualitatively and quantitatively. On the one hand, PTEN ATP-binding mutants lose their phosphatase activity and the effect of downregulation of cyclin D1. On the other, the mislocalized mutant PTEN results in a significantly decreased nuclear p53 protein level and transcriptional activity, enhanced production of reactive oxygen species, induction of Cu/Zn superoxide dismutase as well as dramatically increased DNA double-strand breaks (DSBs). When compared with wild-type PTEN, the ATP-binding mutant PTEN has reduced half-life in vitro and decreased protein expression levels in vivo. Our data, thus, reveal a novel mechanism of tumorigenesis in patients with germline or somatic mutations affecting PTEN ATP-binding motifs, i.e. qualitative and quantitative impairment of PTEN due to the loss of its phosphatase activity, and nuclear mislocalization, resulting in rapid PTEN protein degradation, suppression of p53-mediated transcriptional activity, loss of protection against oxidative stress as well as accumulation of spontaneous DNA DSBs.


Distinct metabolic profiles associated with autism spectrum disorder versus cancer in individuals with germline PTEN mutations.

  • Lamis Yehia‎ et al.
  • NPJ genomic medicine‎
  • 2022‎

PTEN hamartoma tumor syndrome (PHTS), caused by germline PTEN mutations, has been associated with organ-specific cancers and autism spectrum disorder (ASD) and/or developmental delay (DD). Predicting precise clinical phenotypes in any one PHTS individual remains impossible. We conducted an untargeted metabolomics study on an age- and sex-matched series of PHTS individuals with ASD/DD, cancer, or both phenotypes. Using agnostic metabolomic-analyses from patient-derived lymphoblastoid cells and their spent media, we found 52 differentially abundant individual metabolites, 69 cell/media metabolite ratios, and 327 pair-wise metabotype (shared metabolic phenotype) ratios clearly distinguishing PHTS individuals based on phenotype. Network analysis based on significant metabolites pointed to hubs converging on PTEN-related insulin, MAPK, AMPK, and mTOR signaling cascades. Internal cross-validation of significant metabolites showed optimal overall accuracy in distinguishing PHTS individuals with ASD/DD versus those with cancer. Such metabolomic markers may enable more accurate risk predictions and prevention in individual PHTS patients at highest risk.


Supercritical CO2 Assisted TiO2 Preparation to Improve the UV Resistance Properties of Cotton Fiber.

  • Sihong Ye‎ et al.
  • Polymers‎
  • 2022‎

Cotton fiber is favored by people because of its good moisture absorption, heat preservation, soft feel, comfortable wearing and other excellent performance. In recent years, due to the destruction of the ozone layer, the intensity of ultraviolet radiation at ground level has increased. Cotton fiber will degrade under long time ultraviolet irradiation, which limits the outdoor application of cotton fiber. In this study, titanium dioxide (TiO2) particles were prepared on the surface of cotton fibers with the help of supercritical carbon dioxide (SCCO2) to improve the UV resistance of cotton fibers. The effects of SCCO2 treatment on the morphology, surface composition, thermal stability, photostability and mechanical properties of TiO2 were studied by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, thermogravimetric analysis, UV-VIS spectroscopy, and single fiber test. The results showed that TiO2 particles were generated on the fiber surface, which reduced the photo-degradation rate of cotton fiber. This is because TiO2 can absorb UV rays and reduce the absorption of UV rays by the cotton fiber itself. The synthesis process of SCCO2 is simple and environmentally friendly, which provides a promising technology for the synthesis of metal nitrogen dioxide on natural plant fibers.


Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome.

  • Darren Liu‎ et al.
  • Cell reports. Medicine‎
  • 2024‎

Individuals with PTEN hamartoma tumor syndrome (PHTS) harbor pathogenic germline PTEN variants that confer a significantly increased lifetime risk of various organ-specific cancers including second primary malignant neoplasms (SMNs). Currently, there are no reliable biomarkers that can predict individual-level cancer risk. Despite the highly promising value of cell-free DNA (cfDNA) as a biomarker for underlying sporadic cancers, the utility of cfDNA in individuals with known cancer-associated germline variants and subclinical cancers remains poorly understood. We perform ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA from plasma samples from patients with PHTS and cancer as well as those without cancer. Analysis of cfDNA reveals that patients with PHTS and SMNs have distinct cfDNA size distribution, aberrant genome-wide fragmentation, and differential fragment end motif frequencies. Our work provides evidence that cfDNA profiles may be used as a marker for SMN risk in patients with PHTS.


Identification of crosstalk genes relating to ECM-receptor interaction genes in MASH and DN using bioinformatics and machine learning.

  • Chao Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2024‎

This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.


Exome sequencing reveals germline gain-of-function EGFR mutation in an adult with Lhermitte-Duclos disease.

  • Samantha Colby‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2016‎

Lhermitte-Duclos disease (LDD) is a rare cerebellar disorder believed to be pathognomonic for Cowden syndrome. Presently, the only known etiology is germline PTEN mutation. We report a 41-yr-old white female diagnosed with LDD and wild-type for PTEN. Exome sequencing revealed a germline heterozygous EGFR mutation that breaks a disulfide bond in the receptor's extracellular domain, resulting in constitutive activation. Functional studies demonstrate activation of ERK/AKT signaling pathways, mimicking PTEN loss-of-function downstream effects. The identification of EGFR as a candidate LDD susceptibility gene contributes to advancement of molecular diagnosis and targeted therapy for this rare condition with limited treatment options.


Germline Heterozygous Variants in SEC23B Are Associated with Cowden Syndrome and Enriched in Apparently Sporadic Thyroid Cancer.

  • Lamis Yehia‎ et al.
  • American journal of human genetics‎
  • 2015‎

Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that ∼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress "addiction."


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: