Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The Influence of Analysis Mode Selection on Prediction Accuracy of Corneal Astigmatism Using Pentacam.

  • Jiaqi Meng‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Purpose: To evaluate the influence of analysis mode selection on prediction accuracy of corneal astigmatism using Pentacam. Methods: Fifty-nine eyes of 59 patients implanted with toric intraocular lenses (IOLs) were included in the retrospective study. Preoperative corneal astigmatism (total refractive power) measured with Pentacam was analyzed based on 2-, 3-, 4-, or 5-mm ring or zone mode either centered on corneal apex or pupil center. Actual corneal astigmatism was calculated based on residual astigmatism on the corneal plane, surgical-induced astigmatism, and effective toric power on the corneal plane. Prediction error, the difference between actual corneal astigmatism and measured astigmatism, was compared among different analysis modes. Influences of local topography on prediction error were also evaluated. Results: Based on the zone mode, prediction error was lower when centered on corneal apex than on pupil center at different diameters, whereas based on the ring mode, this difference was only seen at 2-mm cornea (all P < 0.05). When centered on the corneal apex, the zone mode showed lower prediction error than the ring mode at 4- and 5-mm corneas (both P < 0.001), regardless of asymmetric or symmetric astigmatism. In symmetric bowtie, the zone mode showed lower prediction error than the ring mode at 2-mm cornea of the small bowtie, and 4- and 5-mm corneas of the large bowtie (all P < 0.05). Conclusions: For toric IOL planning, the corneal apex may be a better reference center. At a cornea diameter ≥4 mm, the zone mode is more accurate than the ring mode. Local topography affects prediction accuracy in the symmetric bowtie.


Correction of Asymmetric Bowtie Corneal Astigmatism with a Toric Intraocular Lens: Outcomes and Accuracy of Measurement Modes.

  • Hao Li‎ et al.
  • Journal of personalized medicine‎
  • 2023‎

The outcomes of toric intraocular lens (IOL) implantation in correcting asymmetric bowtie corneal astigmatism remain uncertain. The accurate measurement of corneal astigmatism is essential for surgical planning. In this prospective cohort study, patients with asymmetric or symmetric bowtie corneal astigmatism who underwent toric IOL implantation were recruited. Preoperative corneal astigmatism was measured with an IOLMaster and Pentacam (including the simulated keratometry (SimK), total corneal refractive power (TCRP), and wavefront aberration (WFA) modes). At 3 months after surgery, the refractive outcomes and residual astigmatic refractive errors were compared with patients with symmetric bowtie astigmatism. The prediction errors (the differences between the calculated actual corneal astigmatism and the measured corneal astigmatism) were compared among the different measurement modes in the asymmetric group. There were no differences in residual astigmatism between the asymmetric and symmetric groups. However, the mean absolute residual astigmatic refractive error was greater in the asymmetric group than in the symmetric group (0.72 ± 0.42 D vs. 0.53 ± 0.24 D, p = 0.043). In the asymmetric group, the mean absolute prediction errors for the IOLMaster, SimK, TCRP and WFA modes were 0.53 ± 0.40, 0.56 ± 0.47, 0.68 ± 0.52, and 0.43 ± 0.40 D, respectively. The Pentacam WFA mode was the most accurate mode (p < 0.05). The absolute prediction error of the WFA mode was positively correlated with the total corneal irregular astigmatism higher-order aberrations and coma (r = 0.416 and r = 0.473, respectively; both p < 0.05). Our study suggests toric IOL implantation effectively corrected asymmetric bowtie corneal astigmatism. The Pentacam WFA mode may be the most accurate measurement mode, although its accuracy decreased as asymmetry increased.


Interocular Symmetry of Fixation, Optic Disc, and Corneal Astigmatism in Bilateral High Myopia: The Shanghai High Myopia Study.

  • Xiangjia Zhu‎ et al.
  • Translational vision science & technology‎
  • 2019‎

We investigate the interocular symmetry of fixation, optic disc, and corneal astigmatism in bilateral high myopia, and evaluate the predictive relationships between them.


Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium.

  • Qing Li‎ et al.
  • Human genetics‎
  • 2015‎

To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E-8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E-07), TOX (rs7823467, P = 3.47E-07) and LINC00340 (rs12212674, P = 1.49E-06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = -0.59, P = 2.10E-04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: