Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Genome Sequence of the Fish Pathogen Yersinia ruckeri SC09 Provides Insights into Niche Adaptation and Pathogenic Mechanism.

  • Tao Liu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Yersinia ruckeri is the etiologic agent of enteric red mouth disease (ERM), a severe fish disease prevailing in worldwide aquaculture industries. Here we report for the first time the complete genome of Y. ruckeri (Yersinia ruckeri) SC09, a highly virulent strain isolated from Ictalurus punctatus with severe septicemia. SC09 possesses a single chromosome of 3,923,491 base pairs, which contains 3651 predicted protein coding sequences (CDS), 19 rRNA genes, and 79 tRNA genes. Among the CDS, we have identified a Ysa locus containing genes encoding all the components of a type III secretion system (T3SS). Comparative analysis suggest that SC09-Ysa share extensive similarity in sequence, gene content, and gene arrangement with Salmonella enterica pathogenicity island 1 (SPI1) and chromosome-encoded T3SS from Yersinia enterocolitica biotype 1B. Furthermore, phylogenetic analysis shown that SC09-Ysa and SPI1-T3SS belong on the same branch of the phylogenetic tree. These results suggest that SC09-Ysa and SPI1-T3SS appear to mediate biological function to adapt to specific hosts with a similar niche, and both of them are likely to facilitate the development of an intracellular niche. In addition, our analysis also indicated that a substantial part of the SC09 genome might contribute to adaption in the intestinal microenvironment, including a number of proteins associated with aerobic or anaerobic respiration, signal transduction, and various stress reactions. Genomic analysis of the bacterium offered insights into the pathogenic mechanism associated with intracellular infection and intestinal survivability, which constitutes an important first step in understanding the pathogenesis of Y. ruckeri.


Role of the Death Receptor and Endoplasmic Reticulum Stress Signaling Pathways in Polyphyllin I-Regulated Apoptosis of Human Hepatocellular Carcinoma HepG2 Cells.

  • Qihui Luo‎ et al.
  • BioMed research international‎
  • 2018‎

Polyphyllin has been reported to exhibit anticancer effects against various types of cancer via the proapoptotic signaling pathway. The aim of the present study was to investigate the role of the endoplasmic reticulum stress and death receptor signaling pathways in PPI-induced apoptosis of human hepatocellular carcinoma HepG2 cells. Analysis demonstrated that PPI could significantly inhibit the proliferation and induce apoptosis of HepG2 cells in a dose- and time-dependent manner. Investigation into the molecular mechanism of PPI indicated that PPI notably mediated ER stress activation via IRE-1 overexpression and activation of the caspase-12 to protect HepG2 cells against apoptosis. In addition, PPI markedly induced the expression of death receptors signaling pathways-associated factors, including tumor necrosis factor (TNF) receptor 1/TNF-α and FAS/FASL. Additionally, suppression of the death receptor signaling pathways with a caspase-8 inhibitor, Z-IETD-FMK, revealed an increase in the death rate and apoptotic rate of HepG2 cells. Collectively, the findings of the present study suggested that the ER stress and death receptor signaling pathways were associated with PPI-induced HepG2 cell apoptosis; however, endoplasmic reticulum stress may serve a protective role in this process. The combination of PPI and Z-IETD-FMK may activate necroptosis, which enhances apoptosis. Therefore, the results of the present study may improve understanding regarding the roles of signaling pathways in PPI regulated apoptosis and contribute to the development of novel therapies for the treatment of HCC.


Molecular characterization and multi-locus genotypes of Enterocytozoon bieneusi from captive red kangaroos (Macropus Rufus) in Jiangsu province, China.

  • Zhijun Zhong‎ et al.
  • PloS one‎
  • 2017‎

Enterocytozoon bieneusi is the most common pathogen of microsporidian species infecting humans worldwide. Although E. bieneusi has been found in a variety of animal hosts, information on the presence of E. bieneusi in captive kangaroos in China is limited. The present study was aimed at determining the occurrence and genetic diversity of E. bieneusi in captive kangaroos. A total of 61 fecal specimens (38 from red kangaroos and 23 from grey kangaroos) were collected from Nanjing Hongshan Forest Zoo and Hongshan Kangaroo Breeding Research Base, Jiangsu province, China. Using the nested PCR amplification ITS gene of rRNA of E. bieneusi, totally 23.0% (14/61) of tested samples were PCR-positive with three genotypes (i.e. one known genotype, CHK1, and two novel genotypes, CSK1 and CSK2). Multi-locus sequence typing using three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4) revealed one, five, two, and one types at these four loci, respectively. In phylogenetic analysis, the two genotypes, CHK1 and CSK1, were clustered into a new group of unknown zoonotic potential, and the novel genotype CSK2 was clustered into a separate clade with PtEb and PtEbIX. To date, this is the first report on the presence of E. bieneusi in captive red kangaroos in Jiangsu province, China. Furthermore, a high degree of genetic diversity was observed in the E. bieneusi genotype and seven MLGs (MLG1-7) were found in red kangaroos. Our findings suggest that infected kangaroo may act as potential reservoirs of E. bieneusi and be source to transmit infections to other animal.


Molecular mechanisms of pathogenesis in hepatocellular carcinoma revealed by RNA‑sequencing.

  • Yao Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to explore the underlying molecular mechanisms of hepatocellular carcinoma (HCC). RNA‑sequencing profiles GSM629264 and GSM629265, from the GSE25599 data set, were downloaded from the Gene Expression Omnibus database and processed by quality evaluation. GSM629264 and GSM629265 were from HCC and adjacent non‑cancerous tissues, respectively. TopHat software was used for alignment analysis, followed by the detection of novel splicing sites. In addition, the Cufflinks software package was used to analyze gene expressions, and the Cuffdiff program was used to screen for differently expressed genes (DEGs) and differentially expressed splicing variants. Gene ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were also performed. Transcription factors (TFs) and microRNAs (miRNAs) that regulate DEGs were identified, and a protein‑protein interaction (PPI) network was constructed. The hub node in the PPI network was obtained, and the TFs and miRNAs that regulated the hub node were further predicted. The quality of the sequencing data met the standards for analysis, and the clean reads were ~65%. Most sequencing reads mapped into coding sequence exons (CDS_exons), whereas other reads mapped into exon 3' untranslated regions (UTR_Exons), 5'UTR_Exons and Introns. Upregulated and downregulated DEGs between HCC and adjacent non‑cancerous tissues were screened. Genes of differentially expressed splicing variants were identified, including vesicle‑associated membrane protein 4, phosphatidylinositol glycan anchor biosynthesis class C, protein disulfide isomerase family A member 4 and growth arrest specific 5. Screened DEGs were enriched in the complement pathway. In the PPI network, ubiquitin C (UBC) was the hub node. UBC was predicted to be regulated by several TFs, including specificity protein 1 (SP1), FBJ murine osteosarcoma viral oncogene homolog (FOS), proto‑oncogene c‑JUN (JUN), FOS‑like antigen 2 (FOSL2) and SWI/SNF‑related, matrix‑associated, actin‑dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), and several miRNAs, including miR‑30 and miR‑181. Results from the present study demonstrated that UBC, SP1, FOS, JUN, FOSL2, SMARCA4, miR‑30 and miR‑181 may participate in the development of HCC.


Polyphyllin VII Promotes Apoptosis and Autophagic Cell Death via ROS-Inhibited AKT Activity, and Sensitizes Glioma Cells to Temozolomide.

  • Dejiang Pang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

The high recurrence frequency of gliomas but deficiency of effective treatment and prevalent chemoresistance have elicited interests in exploring and developing new agents. Paris polyphyllins are monomers extracted from rhizome of Paris polyphylla var. yunnanensis. Here, we first reported that polyphyllin VII (PP7) exhibited cytotoxic effect on glioma cells. PP7 significantly suppressed the viability and induced cell death of U87-MG and U251 cells after 24 h, with the IC50 values 4.24 ± 0.87 μM and 2.17 ± 0.14 μM, respectively. Both apoptotic and autophagic processes were involved in the cytotoxic effect of PP7, as PP7 activated the Bcl2/Bax pathway and the inhibition of autophagy partly rescued the toxicity of PP7 in glioma cells. In addition, an inhibition of AKT/mTORC1 activity was found after PP7 administration, and it seemed that the overproduction of reactive oxygen species (ROS) was responsible for this effect. Namely, the removal of ROS by NAC treatment mitigated PP7-induced cell death, autophagy, and its effect on the AKT/mTORC1 signaling. Additionally, a combination assay of PP7 with temozolomide (TMZ), the most used chemotherapy for glioma patients, was performed resulting in synergism, while PP7 reduced TMZ resistance through inhibition of MGMT expression. Thus, our study reports PP7 as a potential agent for glioma treatment and reveals its underlying mechanisms of action.


Occurrence and multilocus genotyping of Giardia duodenalis from post-weaned dairy calves in Sichuan province, China.

  • Jiaming Dan‎ et al.
  • PloS one‎
  • 2019‎

Giardia duodenalis is a zoonotic parasitic protist and poses a threat to human and animal health. This study investigated the occurrence of G. duodenalis infection in post-weaned calves from Sichuan province, China. Faecal samples were collected from a total of 306 post-weaned calves (3-12 months old) from 10 farms, including 4 intensive feeding farms and 6 free-ranging farms. The overall infection rate of G. duodenalis was 41.2% (126/306) based on the PCR results at any of the three genetic loci: beta-giardin (bg), triose-phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. Giardia duodenalis assemblages E (n = 115, 91.3%), A (n = 3, 2.4%), and A mixed with E (n = 8, 6.3%) were identified among the 126 positive specimens. Multilocus sequence typing of G. duodenalis revealed 34 assemblage E multilocus genotypes (MLGs), 1 assemblage A MLG and 7 mixed assemblage (A and E) MLGs. The eBURST data showed a high degree of genetic diversity within assemblage E MLGs. The phylogenetic tree revealed that MLG E3 was the primary MLG subtype in Sichuan province and also the most widely distributed in China.


A High Starch Diet Alters the Composition of the Intestinal Microbiota of Largemouth Bass Micropterus salmoides, Which May Be Associated With the Development of Enteritis.

  • Xiaoli Huang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Starch is an inexpensive feed ingredient that has been widely used in fish feed. However, starch utilization by carnivorous fish is limited and excess starch is detrimental to the health of the organism. High starch diets often lead to liver damage, but the effects on the intestine are often overlooked. Therefore, in this study, two isonitrogenous and isolipidic semi-pure diets (NC: 0% α-starch, HC: 22% α-starch) were formulated and fed to largemouth bass (Micropterus salmoides) for 45 days. The effects of the high starch diet on the intestine of largemouth bass were comprehensively investigated by intestinal microbiota, histopathology, ultrastructural pathology, and enzymology analyses. Feeding the HC diet did not affect the growth of largemouth bass during the experimental period. However, the high starch diet led to a reduction in the diversity and abundance of intestinal microbiota in largemouth bass, with a significant increase in the abundance of harmful bacteria (Aeromonas) and a decrease in the abundance of beneficial bacteria (Clostridium, Lactobacillus, and Bifidobacterium). Feeding the HC diet caused the development of enteritis, with goblet cell hyperplasia, epithelial necrosis and detachment and inflammatory cell infiltration, and leading to enlarged apical openings and mitochondrial damage in goblet cells. Long-term feeding of the HC diet inhibited intestinal α-amylase activity. changes in the intestinal microbiota, such as an increase in Aeromonas and a decrease in Clostridium, Lactobacillus, and Bifidobacterium, may be closely related to the development of enteritis. Therefore, adding these beneficial bacteria as probiotics may be an effective way to prevent damage to the intestine of largemouth bass from a high carbohydrate diet. Our results suggest reducing the amount of starch added to the largemouth bass diets. This study provides a reference for protecting the largemouth bass gut during modern intensive culture.


The combination of high glucose and LPS induces autophagy in bovine kidney epithelial cells via the Notch3/mTOR signaling pathway.

  • Yaocheng Cui‎ et al.
  • BMC veterinary research‎
  • 2022‎

Aside respiratory diseases, beef cattle may also suffer from serious kidney diseases after transportation. Hyperglycemia and gram-negative bacterial infection may be the main reasons why bovine is prone to severe kidney disease during transportation stress, however, the precise mechanism is still unclear. The purpose of the current study is to explore whether the combined treatment of high glucose (HG) and lipopolysaccharide (LPS) could induce madin-darby bovine kidney (MDBK) cells injury and autophagy, as well as investigate the potential molecular mechanisms involved.


Effect of Bacterial Infection on the Edibility of Aquatic Products: The Case of Crayfish (Procambarus clarkii) Infected With Citrobacter freundii.

  • Xiaoli Huang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Aquatic products are one of the world's essential protein sources whose quality and safety are threatened by bacterial diseases. This study investigated the possible effects of bacterial infection on the main edible part, the muscle, in the case of crayfish infected with Citrobacter freundii. The histopathological analysis confirmed that crayfish was sensitive to C. freundii and muscle was one of the target organs. The transcriptome results showed impaired intercellular junctions, downregulation of actin expression, and inhibition of metabolic pathways. Furthermore, transcriptomic results suggest that C. freundii mainly affect muscle structure and nutrition. Subsequent validation experiments confirmed structural damage and nutrient loss in C. freundii infected crayfish muscle. Besides, the spoilage tests showed that C. freundii did not accelerate muscle spoilage and the bacteria had a limited impact on food safety. Therefore, although C. freundii may not be a specific spoilage bacterium, it still affects the edible taste and nutritional value of crayfish muscle. The findings of this study might contribute to further research on C. freundii infection and provide a warning about the adverse effects of bacterial infection on aquatic products.


Metagenomics Reveals That Proper Placement After Long-Distance Transportation Significantly Affects Calf Nasopharyngeal Microbiota and Is Critical for the Prevention of Respiratory Diseases.

  • Yaocheng Cui‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Transportation is an inevitable phase for the cattle industry, and its effect on the respiratory system of transported cattle remains controversial. To reveal cattle's nasopharyngeal microbiota dynamics, we tracked a batch of beef calves purchased from an auction market, transported to a farm by vehicle within 3 days, and adaptively fed for 7 days. Before and after the transport and after the placement, a total of 18 nasopharyngeal mucosal samples were collected, and microbial profiles were obtained using a metagenomic shotgun sequencing approach. The diversity, composition, structure, and function of the microbiota were collected at each time point, and their difference was analyzed. The results showed that, before the transportation, there were a great abundance of potential bovine respiratory disease (BRD)-related pathogens, and the transportation did not significantly change their abundance. After the transportation, 7 days of placement significantly decreased the risk of BRD by decreasing the abundance of potential BRD-related pathogens even if the diversity was decreased. We also discussed the controversial results of transportation's effect in previous works and the decrease in diversity induced by placement. Our work provided more accurate information about the effect of transportation and the followed placement on the calf nasopharyngeal microbial community, indicated the importance of adaptive placement after long-distance transport, and is helpful to prevent BRD induced by transportation stress.


An altered gut microbiota in duck-origin parvovirus infection on cherry valley ducklings is associated with mucosal barrier dysfunction.

  • Qihui Luo‎ et al.
  • Poultry science‎
  • 2021‎

Duck-origin parvovirus disease is an epidemic disease mainly caused by duck-origin goose parvovirus (D-GPV), which is characterized by beak atrophy and dwarfism syndrome. Its main symptoms are persistent diarrhea, skeletal dysplasia, and growth retardation. However, the pathogenesis of Cherry Valley ducks infected by D-GPV has not been studied thoroughly. To perceive the distribution of D-GPV in the intestinal tract, intestinal morphological development, intestinal permeability, inflammatory cytokines in Cherry Valley ducks, and expression of tight junction protein, the D-GPV infection was given intramuscularly. Illumina MiSeq sequencing technology was used to analyze the diversity and structure of ileum flora and content of short-chain fatty acids of its metabolites. To investigate the relationship between intestinal flora changes and intestinal barrier function after D-GPV infection on Cherry Valley ducks is of great theoretical and practical significance for further understanding the pathogenesis of D-GPV and the structure of intestinal flora in ducks. The results showed that D-GPV infection was accompanied by intestinal inflammation and barrier dysfunction. At this time, the decrease of a large number of beneficial bacteria and the content of short-chain fatty acids in intestinal flora led to the weakening of colonization resistance of the intestinal flora and the accumulation of potentially pathogenic bacteria, which would aggravate the negative effect of D-GPV damage to the intestinal tract. Furthermore, a significant increase in Unclassified_S24-7 and decrease in Streptococcus was observed in D-GPV persistent, indicating the disruption in the structure of gut microbiota. Notably, the shift of microbiota was associated with the transcription of tight-junction protein and immune-associated cytokines. These results indicate that altered ileum microbiota, intestinal barrier, and immune dysfunction are associated with D-GPV infection. Therefore, there is a relationship between the intestinal barrier dysfunction and dysbiosis caused by D-GPV, but the specific mechanism needs to be further explored.


Transcriptome reveals the role of the htpG gene in mediating antibiotic resistance through cell envelope modulation in Vibrio mimicus SCCF01.

  • Zhenyang Qin‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

HtpG, a bacterial homolog of the eukaryotic 90 kDa heat-shock protein (Hsp90), represents the simplest member of the heat shock protein family. While the significance of Hsp90 in fungal and cancer drug resistance has been confirmed, the role of HtpG in bacterial antibiotic resistance remains largely unexplored. This research aims to investigate the impact of the htpG gene on antibiotic resistance in Vibrio mimicus. Through the creation of htpG gene deletion and complementation strains, we have uncovered the essential role of htpG in regulating the structural integrity of the bacterial cell envelope. Our transcriptomics analysis demonstrates that the deletion of htpG increases the sensitivity of V. mimicus to antimicrobial peptides, primarily due to upregulated lipopolysaccharide synthesis, reduced glycerophospholipid content, and weakened efflux pumps activity. Conversely, reduced sensitivity to β-lactam antibiotics in the ΔhtpG strain results from decreased peptidoglycan synthesis and dysregulated peptidoglycan recycling and regulation. Further exploration of specific pathway components is essential for a comprehensive understanding of htpG-mediated resistance mechanisms, aiding in the development of antimicrobial agents. To our knowledge, this is the first effort to explore the relationship between htpG and drug resistance in bacteria.


Evaluation and Selection of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis of Gene Expression in Nile Tilapia (Oreochromis niloticus) during Vaccination and Infection.

  • Erlong Wang‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA.


Candidate Animal Disease Model of Elizabethkingia Spp. Infection in Humans, Based on the Systematic Pathology and Oxidative Damage Caused by E. miricola in Pelophylax nigromaculatus.

  • Xiaoli Huang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Most species of the genus Elizabethkingia are pathogenic to humans and animals, most commonly causing meningitis. However, our understanding of the pathogenic mechanisms involved is poor and there have been few pathological studies of Elizabethkingia spp. in animals. To understand the host injury induced by Elizabethkingia spp., we established a model of E. miricola infection in the black-spotted frog (Pelophylax nigromaculatus). The systematic pathology in and oxidative damage in the infection model were investigated. Our results show that recently isolated E. miricola is a bacterium that mainly parasitizes the host brain and that neurogenic organs are the predominant sites of damage. Infection mainly manifested as severe brain abscesses, meningoencephalitis, necrotic spondylitis, and necrotic retinitis. The liver, spleen, kidney, gastrointestinal tract, and lung were also affected to varying degrees, with bacterial necrotic inflammation. P. nigromaculatus also suffered enormous damage to its oxidative system during E. miricola infection, which may have further aggravated its disease state. Our results provide a preliminary reference for the study and treatment of Elizabethkingia spp.-induced neurological diseases in animals.


Molecular characterization of a p38 mitogen-activated protein kinase gene from Scylla paramamosain and its expression profiles during pathogenic challenge.

  • Zehui Yu‎ et al.
  • Journal of invertebrate pathology‎
  • 2017‎

A novel p38 MAPK gene from S. paramamosain was cloned and characterized by rapid amplification of cDNA ends (RACE) technology. S. paramamosain p38 (Sp-p38) MAPK gene consists of an open reading frame of 1095bp encoding a 365-amino-acid protein, which showed close phylogenetic relationship to Litopenaeus vannamei p38 MAPK. The tissue distribution patterns showed that Sp-p38 MAPK was widely expressed in all examined tissues, with the highest expression in hemocytes and intestines. The expression levels of Sp-p38 MAPK in hemocytes was up-regulated post-stimulation, which reached the peak at 6h and 12h after bacteria (S. aureus and V. harveyi) and WSSV infection, respectively. In conclusion, our data contributed to define the biological characteristics of Sp-p38 MAPK and further demonstrated the critical role of Sp-p38 MAPK in vivo during the viral and bacterial infection.


Delayed Pulmonary Apoptosis of Diet-Induced Obesity Mice following Escherichia coli Infection through the Mitochondrial Apoptotic Pathway.

  • Fengyuan Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Escherichia coli (E. coli) is one of pathogens causing nosocomial pneumonia and could induce pulmonary excessive apoptosis. Although much has been learned about metabolic diseases induced by obesity, the information linking bacterial pneumonia to obesity is limited. Accordingly, we investigated the apoptosis of normal (lean) and diet-induced obesity (DIO, fed a high-fat diet) mice after nasal instillation with E. coli. Lung tissues were obtained at 0 (preinfection), 12, 24, and 72 h after infection, and acute pulmonary inflammation was observed at 12 h. Elevated cell apoptosis and percentage of pulmonary cells depolarized with collapse of the mitochondrial transmembrane potential (Δψm) occurred in response to bacterial infection. The relative mRNA and protein expressions of Bax, caspase-3, and caspase-9 increased, but Bcl-2 decreased in the lung. Interestingly, the apoptotic percentage and most of apoptosis-associated factors mentioned above peaked at 12 or 24 h in the lean-E. coli group, while at 24 or 72 h in the DIO-E. coli group. Taken together, these findings indicated that the E. coli pneumonia caused excessive pulmonary apoptosis through the mitochondria-mediated pathway, and the apoptosis was delayed in the DIO mice with E. coli pneumonia.


Occurrence and multilocus genotyping of Giardia duodenalis in captive non-human primates from 12 zoos in China.

  • Xueping Zhang‎ et al.
  • PloS one‎
  • 2020‎

Giardia duodenalis is a common enteric protozoan that infects a range of hosts including humans and other mammals. Multilocus genotyping of G. duodenalis in captive non-human primates (NHPs) from zoos in China is limited. In this study, we evaluated 302 NHP fecal samples collected from 32 different NHP species. The primates were from 12 zoos distributed across eight provinces and two municipalities (Chongqing and Beijing) of China. The overall infection rate was 8.3% (25/302). The six G. duodenalis-positive zoos and their infection rates were: Suzhou Zoo (40.0%, 4/10), Yangzhou Zoo (22.2%, 2/9), Dalian Zoo (16.7%, 4/24), Chengdu Zoo (12.8%, 6/47), Guiyang Forest Wildlife Zoo (12.1%, 7/58), and Changsha Zoo (4.7%, 2/43). Molecular analysis of three loci, beta-giardin (bg), triose phosphate isomerase (tpi), and glutamate dehydrogenase (gdh), showed high genetic heterogeneity, and seven novel subtypes (BIII-1, MB10-1, WB8-1, B14-1, MB9-1, DN7-1, and BIV-1) were detected within assemblage B. Additional analysis revealed 12 different assemblage B multilocus genotypes (MLGs), one known MLG and 11 novel MLGs. Based on phylogenetic analysis, 12 assemblage B MLGs formed two main clades, MLG-SW (10-12, 18) and MLG-SW (13, 14, 16, 17), the other four MLG-SW (15, 19, 20, 21) were scattered throughout the phylogenetic tree in this study. Using multilocus genotyping, this study expands our understanding of the occurrence of Giardia infection and genetic variation in Giardia in captive non-human primates from zoos in China.


Multilocus genotyping of Giardia duodenalis in captive non-human primates in Sichuan and Guizhou provinces, Southwestern China.

  • Zhijun Zhong‎ et al.
  • PloS one‎
  • 2017‎

Giardia duodenalis is a common human and animal pathogen. It has been increasingly reported in wild and captive non-human primates (NHPs) in recent years. However, multilocus genotyping information for G. duodenalis infecting NHPs in southwestern China is limited. In the present study, the prevalence and multilocus genotypes (MLGs) of G. duodenalis in captive NHPs in southwestern China were determined. We examined 207 fecal samples from NHPs in Sichuan and Guizhou provinces, and 16 specimens were positive for G. duodenalis. The overall infection rate was 7.7%, and only assemblage B was identified. G. duodenalis was detect positive in northern white-cheeked gibbon (14/36, 38.9%), crab-eating macaque (1/60, 1.7%) and rhesus macaques (1/101, 0.9%). Multilocus sequence typing based on beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) revealed nine different assemblage B MLGs (five known genotypes and four novel genotypes). Based on a phylogenetic analysis, one potentially zoonotic genotype of MLG SW7 was identified in a northern white-cheeked gibbon. A high degree of genetic diversity within assemblage B was observed in captive northern white-cheeked gibbons in Southwestern China, including a potentially zoonotic genotype, MLG SW7. To the best of our knowledge, this is the first report using a MLGs approach to identify G. duodenalis in captive NHPs in Southwestern China.


Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus.

  • Jieyao Zhu‎ et al.
  • Molecular immunology‎
  • 2017‎

Antimicrobial peptides are small peptides that play important roles in a host's innate immune response. As an important antimicrobial peptide, β-defensin widely distribute in mammals, insects and plants with broad-spectrum antimicrobial activity. In this study, the β-defensin gene of the channel catfish, Ictalurus punctatus, was cloned, sequenced, and subjected to a bioinformatic analysis. The β-defensin gene of the channel catfish contains three exons and two introns, and encodes a precursor peptide consisting of two domains: a signal peptide of 24 amino acid residues and a mature peptide of 43 amino acid residues. The mature peptide is estimated to have a molecular mass of 7.1kDa and a theoretical isoelectric point of 8.21. Channel catfish β-defensin (ccBD) has six conserved cysteine residues, forming three disulfide bridges at C1-C5, C2-C4, and C3-C6, and a β-sheet in the predicted three-dimensional structure. A phylogenetic analysis suggests that ccBD belongs to the type 1 β-defensins. Real-time quantitative PCR showed that channel catfish β-defensin transcripts are constitutively expressed in various tissues in healthy fish, with highest expression in the skin. The expression of ccBD in vivo increased significantly in the head kidney (2.9-fold), gill (2.2-fold), and skin (6.6-fold) at 48h after bacterial (Edwardsiella ictaluri) challenge. In vitro, lipopolysaccharide (LPS), a bacterial mimic, induced significant changes in ccBD expression in leukocytes from the spleen (3.4-fold) and head kidney (3.9-fold) 24h after stimulation. Chemically synthesized ccBD displayed marked inhibitory activity against a broad range of bacteria. These results suggest that ccBD is involved in the innate antibacterial defenses of the channel catfish.


The Insights of Genomic Synteny and Codon Usage Preference on Genera Demarcation of Iridoviridae Family.

  • Zhaobin Deng‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The members of the family Iridoviridae are large, double-stranded DNA viruses that infect various hosts, including both vertebrates and invertebrates. Although great progress has been made in genomic and phylogenetic analyses, the adequacy of the existing criteria for classification within the Iridoviridae family remains unknown. In this study, we redetermined 23 Iridoviridae core genes by re-annotation, core-pan analysis and local BLASTN search. The phylogenetic tree based on the 23 re-annotated core genes (Maximum Likelihood, ML-Tree) and amino acid sequences (composition vector, CV-Tree) were found to be consistent with previous reports. Furthermore, the information provided by synteny analysis and codon usage preference (relative synonymous codon usage, correspondence analysis, ENC-plot and Neutrality plot) also supports the phylogenetic relationship. Collectively, our results will be conducive to understanding the genera demarcation within the Iridoviridae family based on genomic synteny and component (codon usage preference) and contribute to the existing taxonomy methods for the Iridoviridae family.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: