Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice.

  • Qingliang Hu‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Strigolactones (SLs) are the latest confirmed phytohormones that regulate shoot branching by inhibiting bud outgrowth in higher plants. Perception of SLs depends on a novel mechanism employing an enzyme-receptor DWARF14 (D14) that hydrolyzes SLs and becomes covalently modified. This stimulates the interaction between D14 and D3, leading to the ubiquitination and degradation of the transcriptional repressor protein D53. However, the regulation of SL perception in rice remains elusive. In this study, we provide evidences that D14 is ubiquitinated after SL treatment and degraded through the 26S proteasome system. The Lys280 site of the D14 amino acid sequence was important for SL-induced D14 degradation, but did not change the subcellular localization of D14 nor disturbed the interaction between D14 and D3, nor D53 degradation. Biochemical and genetic analysis indicated that the key amino acids in the catalytic center of D14 were essential for D14 degradation. We further showed that D14 degradation is dependent on D3 and is tightly correlated with protein levels of D53. These findings revealed that D14 degradation takes place following D53 degradation and functions as an important feedback regulation mechanism of SL perception in rice.


A route to de novo domestication of wild allotetraploid rice.

  • Hong Yu‎ et al.
  • Cell‎
  • 2021‎

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid.

  • Xue Liu‎ et al.
  • Molecular plant‎
  • 2020‎

Rice tillering is an important agronomic trait affecting grain yield. Here, we identified a high-tillering mutant tillering20 (t20), which could be restored to the wild type by treatment with the strigolactone (SL) analog rac-GR24. T20 encodes a chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites, SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering. We discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-β-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.


Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice.

  • Meiru Jia‎ et al.
  • Cell discovery‎
  • 2022‎

Chilling is a major abiotic stress harming rice development and productivity. The C-REPEAT BINDING FACTOR (CBF)-dependent transcriptional regulatory pathway plays a central role in cold stress and acclimation in Arabidopsis. In rice, several genes have been reported in conferring chilling tolerance, however, the chilling signaling in rice remains largely unknown. Here, we report the chilling-induced OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 6 (OsSAPK6)-IDEAL PLANT ARCHITECTURE 1 (IPA1)-OsCBF3 signal pathway in rice. Under chilling stress, OsSAPK6 could phosphorylate IPA1 and increase its stability. In turn, IPA1 could directly bind to the GTAC motif on the OsCBF3 promoter to elevate its expression. Genetic evidence showed that OsSAPK6, IPA1 and OsCBF3 were all positive regulators of rice chilling tolerance. The function of OsSAPK6 in chilling tolerance depended on IPA1, and overexpression of OsCBF3 could rescue the chilling-sensitive phenotype of ipa1 loss-of-function mutant. Moreover, the natural gain-of-function allele ipa1-2D could simultaneously enhance seedling chilling tolerance and increase grain yield. Taken together, our results revealed a chilling-induced OsSAPK6-IPA1-OsCBF signal cascade in rice, which shed new lights on chilling stress-tolerant rice breeding.


An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro.

  • Huihui Liu‎ et al.
  • Molecular plant‎
  • 2022‎

Multisubunit SKP1/Cullin1/F-box (SCF) E3 ligases play essential roles in regulating the stability of crucial regulatory factors and controlling growth and development in eukaryotes. Detecting E3 ligase activity in vitro is important for exploring the molecular mechanism of protein ubiquitination. However, in vitro ubiquitination assay systems for multisubunit E3 ligases remain difficult to achieve, especially in plants, mainly owing to difficulties in achieving active components of multisubunit E3 ligases with high purity and characterizing specific E2 and E3 pairs. In this study, we characterized components of the rice SCFDWARF3 (SCFD3) E3 ligase, screened the coordinated E2, and reconstituted active SCFD3 E3 ligase in vitro. We further engineered SCFD3 E3 ligase using a fused SKP1-Cullin1-RBX1 (eSCR) protein and found that both the wild-type SCFD3 E3 ligase and the engineered SCFD3 E3 ligase catalyzed ubiquitination of the substrate D53, which is the key transcriptional repressor in strigolactone signaling. Finally, we replaced D3 with other F-box proteins from rice and humans and reconstituted active eSCF E3 ligases, including eSCFGID2, eSCFFBXL18, and eSCFCDC4 E3 ligases. Our work reconstitutes functional SCF E3 ligases in vitro and generates an engineered system with interchangeable F-box proteins, providing a powerful platform for studying the mechanisms of multisubunit SCF E3 ligases in eukaryotes.


IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice.

  • Xiaoguang Song‎ et al.
  • Cell research‎
  • 2017‎

Strigolactones (SLs), a group of carotenoid derived terpenoid lactones, are root-to-shoot phytohormones suppressing shoot branching by inhibiting the outgrowth of axillary buds. DWARF 53 (D53), the key repressor of the SL signaling pathway, is speculated to regulate the downstream transcriptional network of the SL response. However, no downstream transcription factor targeted by D53 has yet been reported. Here we report that Ideal Plant Architecture 1 (IPA1), a key regulator of the plant architecture in rice, functions as a direct downstream component of D53 in regulating tiller number and SL-induced gene expression. We showed that D53 interacts with IPA1 in vivo and in vitro and suppresses the transcriptional activation activity of IPA1. We further showed that IPA1 could directly bind to the D53 promoter and plays a critical role in the feedback regulation of SL-induced D53 expression. These findings reveal that IPA1 is likely one of the long-speculated transcription factors that act with D53 to mediate the SL-regulated tiller development in rice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: