Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Monoacylglycerol lipase inhibitors produce pro- or antidepressant responses via hippocampal CA1 GABAergic synapses.

  • Y Wang‎ et al.
  • Molecular psychiatry‎
  • 2017‎

The probability of suffering the mood disorder depression is up to 30% in women and 15% in men during their life span. Pharmacological options for depression are limited: conventional antidepressants have low efficacy and a delayed onset of action (several weeks). Here we investigate the antidepressant actions of inhibitors of monoacylglycerol lipase (MAGL), the major degradative enzyme of the endocannabinoid 2-arachidonoylglycerol. A low-dose of MAGL inhibitors produces antidepressant effects on acute stress-exposed mice, through glutamatergic synaptic long-term depression (LTD), without significant effects on chronic corticosterone-exposed mice. In contrast, a high-dose of MAGL inhibitors produces pro- or antidepressant effects on acute stress- or chronic corticosterone-exposed mice, respectively, through GABAergic synaptic disinhibition. In the hippocampus, in vivo inhibition of MAGL induces a CB1 cannabinoid receptor (CB1R)-dependent suppression of inhibitory GABAergic synapses and an in vivo LTD of excitatory glutamatergic synapses. LTD induction requires CB1R in astroglial cells (but not in GABAergic or glutamatergic neurons) and postsynaptic glutamate receptors. The conventional antidepressant fluoxetine produces rapid or delayed antidepressant effects in acute stress- or chronic corticosterone-exposed mice, respectively. We propose that depression-like behavior of animals in response to acute stress is the normal behavioral response, and thus, MAGL inhibitors, which produce antidepressant effects in chronic corticosterone-exposed animals through GABAergic synaptic disinhibition, represent a new class of rapidly-acting and long-lasting antidepressants.


Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety.

  • D B McKim‎ et al.
  • Molecular psychiatry‎
  • 2018‎

Psychosocial stress contributes to the development of anxiety and depression. Recent clinical studies have reported increased inflammatory leukocytes in circulation of individuals with stress-related psychiatric disorders. Parallel to this, our work in mice shows that social stress causes release of inflammatory monocytes into circulation. In addition, social stress caused the development of prolonged anxiety that was dependent on inflammatory monocytes in the brain. Therefore, we hypothesize that chronic stress drives the production of inflammatory monocytes that are actively recruited to the brain by microglia, and these monocytes augment neuroinflammatory signaling and prolong anxiety. Here we show that repeated social defeat stress in mice activated threat appraisal centers in the brain that spatially coincided with microglial activation and endothelial facilitation of monocyte recruitment. Moreover, microglial depletion with a CSF1R antagonist prior to stress prevented the recruitment of monocytes to the brain and abrogated the development of anxiety. Cell-specific transcriptional profiling revealed that microglia selectively enhanced CCL2 expression, while monocytes expressed the pro-inflammatory cytokine interleukin-1β (IL-1β). Consistent with these profiles, the recruited inflammatory monocytes with stress adhered to IL-1R1+ neurovascular endothelial cells and this interaction was blocked by microglial depletion. Furthermore, disruption of IL-1β signaling by caspase-1KO specifically within bone marrow-derived cells revealed that monocytes promoted anxiogenesis through stimulation of neurovascular IL-1R1 by IL-1β. Collectively, the development of anxiety during stress was caused by microglial recruitment of IL-1β-producing monocytes, which stimulated brain endothelial IL-1R1. Thus, monocyte IL-1β production represents a novel mechanism that underlies behavioral complications associated with stress-related psychiatric disorders.


Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.

  • M Mattheisen‎ et al.
  • Molecular psychiatry‎
  • 2015‎

Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1065 families (containing 1406 patients with OCD), combined with population-based samples (resulting in a total sample of 5061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at single-nucleotide polymorphism (SNP) and gene levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13 × 10(-)(7)). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of genome-wide association study (GWAS) signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high-confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2 and PTPRD. Analyses at the gene level revealed association of IQCK and C16orf88 (both P<1 × 10(-)(6), experiment-wide significant), as well as OFCC1 (P=6.29 × 10(-)(5)). The suggestive findings in this study await replication in larger samples.


Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise.

  • C Suo‎ et al.
  • Molecular psychiatry‎
  • 2016‎

Physical and cognitive exercise may prevent or delay dementia in later life but the neural mechanisms underlying these therapeutic benefits are largely unknown. We examined structural and functional magnetic resonance imaging (MRI) brain changes after 6 months of progressive resistance training (PRT), computerized cognitive training (CCT) or combined intervention. A total of 100 older individuals (68 females, average age=70.1, s.d.±6.7, 55-87 years) with dementia prodrome mild cognitive impairment were recruited in the SMART (Study of Mental Activity and Resistance Training) Trial. Participants were randomly assigned into four intervention groups: PRT+CCT, PRT+SHAM CCT, CCT+SHAM PRT and double SHAM. Multimodal MRI was conducted at baseline and at 6 months of follow-up (immediately after training) to measure structural and spontaneous functional changes in the brain, with a focus on the hippocampus and posterior cingulate regions. Participants' cognitive changes were also assessed before and after training. We found that PRT but not CCT significantly improved global cognition (F(90)=4.1, P<0.05) as well as expanded gray matter in the posterior cingulate (Pcorrected <0.05), and these changes were related to each other (r=0.25, P=0.03). PRT also reversed progression of white matter hyperintensities, a biomarker of cerebrovascular disease, in several brain areas. In contrast, CCT but not PRT attenuated decline in overall memory performance (F(90)=5.7, P<0.02), mediated by enhanced functional connectivity between the hippocampus and superior frontal cortex. Our findings indicate that physical and cognitive training depend on discrete neuronal mechanisms for their therapeutic efficacy, information that may help develop targeted lifestyle-based preventative strategies.


The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders.

  • H Chang‎ et al.
  • Molecular psychiatry‎
  • 2018‎

Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.


Whole-genome association analysis of treatment response in obsessive-compulsive disorder.

  • H Qin‎ et al.
  • Molecular psychiatry‎
  • 2016‎

Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed.


A DNA methylation biomarker of alcohol consumption.

  • C Liu‎ et al.
  • Molecular psychiatry‎
  • 2018‎

The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10-7. Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.


Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

  • P Li‎ et al.
  • Molecular psychiatry‎
  • 2015‎

Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors.


Association of SLC6A4 variants with obsessive-compulsive disorder in a large multicenter US family study.

  • E Voyiaziakis‎ et al.
  • Molecular psychiatry‎
  • 2011‎

Genetic association studies of SLC6A4 (SERT) and obsessive-compulsive disorder (OCD) have been equivocal. We genotyped 1241 individuals in 278 pedigrees from the OCD Collaborative Genetics Study for 13 single-nucleotide polymorphisms, for the linked polymorphic region (LPR) indel with molecular haplotypes at rs25531, for VNTR polymorphisms in introns 2 and 7 and for a 381-bp deletion 3' to the LPR. We analyzed using the Family-Based Association Test (FBAT) under additive, dominant, recessive and genotypic models, using both OCD and sex-stratified OCD as phenotypes. Two-point FBAT analysis detected association between Int2 (P = 0.0089) and Int7 (P = 0.0187) (genotypic model). Sex-stratified two-point analysis showed strong association in females with Int2 (P<0.0002), significant after correction for linkage disequilibrium, and multiple marker and model testing (P(Adj) = 0.0069). The SLC6A4 gene is composed of two haplotype blocks (our data and the HapMap); FBAT whole-marker analysis conducted using this structure was not significant. Several noteworthy nonsignificant results have emerged. Unlike Hu et al., we found no evidence for overtransmission of the LPR L(A) allele (genotype relative risk = 1.11, 95% confidence interval: 0.77-1.60); however, rare individual haplotypes containing L(A) with P<0.05 were observed. Similarly, three individuals (two with OCD/OCPD) carried the rare I425V SLC6A4 variant, but none of them passed it on to their six OCD-affected offspring, suggesting that it is unlikely to be solely responsible for the 'OCD plus syndrome', as reported by Ozaki et al. In conclusion, we found evidence of genetic association at the SLC6A4 locus with OCD. A noteworthy lack of association at the LPR, LPR-rs25531 and rare 425V variants suggests that hypotheses about OCD risk need revision to accommodate these new findings, including a possible gender effect.


Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus.

  • R S Desikan‎ et al.
  • Molecular psychiatry‎
  • 2015‎

We investigated the genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10(-7)). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer's neurodegeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: