Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 74 papers

Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats.

  • Y Sun‎ et al.
  • International journal of obesity (2005)‎
  • 2009‎

Intestinal electric stimulation (IES) is proposed as a potential tool for the treatment of morbid obesity. Our earlier study showed that IES with one pair of electrodes accelerated intestinal transit and decreased fat absorption in a segment of the jejunum in anesthetized rats. The aims of this study were to assess the effects of IES on whole gut transit and fat absorption in conscious rats, to examine the effects of multi-pairs IES and to explore the cholinergic mechanism behind the effects of IES.


Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator.

  • X Xiong‎ et al.
  • Oncogene‎
  • 2011‎

Several ribosomal proteins regulate p53 function by modulating MDM2. We recently found that RPS27L, a RPS27-like protein, is a direct p53-inducible target. Here we showed that RPS27 itself is a p53-repressible target. Furthermore, the N-terminal region of either RPS27L or RPS27 binds to MDM2 on the central acidic domain of MDM2. RPS27L or RPS27 forms an in vivo triplex with MDM2-p53 and competes with p53 for MDM2 binding. Similar to p53, RPS27L, but not RPS27, is a short-lived protein and a novel MDM2 substrate. Degradation of RPS27L requires the RING or acidic domain of MDM2. Ectopic expression of RPS27L or RPS27 inhibits MDM-2-mediated p53 ubiquitination and increases p53 levels by extending p53 protein half-life, whereas siRNA silencing of RPS27L decreases p53 levels by shortening p53 half-life, with a corresponding reduction in p53 transcription activity. RPS27L is mainly localized in the cytoplasm, but upon p53-activating signals, a portion of RPS27L shuttled to the nucleoplasm where it colocalizes with MDM2. Both the cytoplasmic and the nuclear p53, induced by ribosomal stress, were reduced upon RPS27L silencing. Our study reveals a multilevel interplay between RPS27L/S27 and p53-MDM2 axis, with RPS27L functioning as a p53 target, a MDM2 substrate and a p53 regulator.


Pathway-BasedFeature Selection Algorithm for Cancer Microarray Data.

  • Nirmalya Bandyopadhyay‎ et al.
  • Advances in bioinformatics‎
  • 2009‎

Classification of cancers based on gene expressions produces better accuracy when compared to that of the clinical markers. Feature selection improves the accuracy of these classification algorithms by reducing the chance of overfitting that happens due to large number of features. We develop a new feature selection method called Biological Pathway-based Feature Selection (BPFS) for microarray data. Unlike most of the existing methods, our method integrates signaling and gene regulatory pathways with gene expression data to minimize the chance of overfitting of the method and to improve the test accuracy. Thus, BPFS selects a biologically meaningful feature set that is minimally redundant. Our experiments on published breast cancer datasets demonstrate that all of the top 20 genes found by our method are associated with cancer. Furthermore, the classification accuracy of our signature is up to 18% better than that of vant Veers 70 gene signature, and it is up to 8% better accuracy than the best published feature selection method, I-RELIEF.


Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor.

  • M Wang‎ et al.
  • Neuroscience‎
  • 2015‎

Interleukin-23/interleukin-23 receptor (IL-23/IL-23R) has been implicated in many inflammatory diseases. Previous research mainly focused on its ability to induce IL-17 production from T cells. However, few studies have investigated its role in cerebral ischemic injury. The aim of our study was to explore the potential effect of IL-23 on cells of the neurovascular unit (NVU) under an oxygen-glucose deprivation (OGD) condition and the role of IL-23R in IL-23-mediated effect. OGD of primary cells of the NVU and permanent middle cerebral artery occlusion (pMCAO) were used to produce experimental stroke in vitro and in vivo, respectively. IL-23 and IL-23R were detected by immunohistochemistry and western blot in pMCAO mice. Metabolic viability of cultured cells was assessed by MTT assay. The cell-associated proteins (Bcl-2, AQP4 and ET-1) were determined by western blot and enzyme-linked immunosorbent assay (ELISA). Immunofluorescence staining and western blot were used to detect the IL-23R expression. The results showed that the expression of IL-23/IL-23R was elevated in pMCAO mice. IL-23 could aggravate neuron damage, astrocyte swelling, and further impair the integrity of blood-brain barrier induced by OGD. In addition, the effect of IL-23 on cells of the NVU is mediated by IL-23R and is likely IL-23R-expression-level dependent. However, there are no such biological properties for the IL-23p19 subunit alone. Our study provides the first evidence that IL-23 has a toxic effect on cells of the NVU under OGD stress, which is mediated by IL-23R. These results not only help us better understand the role of IL-23/IL-23R in brain ischemia, but also provide a potential therapeutic target in stroke.


MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET.

  • Y-Q Li‎ et al.
  • Cell death & disease‎
  • 2015‎

Our previous microarray analysis indicated that miR-34c was downregulated in nasopharyngeal carcinoma (NPC). However, little is known about the function and molecular mechanism of miR-34c in NPC. In this study, miR-34c was found to be significantly downregulated in NPC cell lines and clinical tissues. Ectopic expression of miR-34c suppressed NPC cell viability, colony formation, anchorage-independent growth, cell migration and invasion in vitro, and inhibited xenograft tumor growth and lung metastasis in vivo. MET proto-oncogene (MET) was identified as a direct target of miR-34c using luciferase reporter assays, quantitative RT-PCR, western blotting and immunofluorescent staining. Overexpression of miR-34c markedly reduced MET expression at both the mRNA and protein levels. Knockdown of MET suppressed NPC cell proliferation, migration and invasion, whereas the restoration of MET rescued the suppressive effects of miR-34c. The demethylation agent 5-aza-2'-deoxycytidine (DAC) restored the expression of miR-34c in NPC cell lines. The promoter region of miR-34c was hypermethylated in NPC cells. In conclusion, miR-34c suppresses tumor growth and metastasis in NPC by targeting MET. The newly identified miR-34c/MET pathway provides further insights into the development and progression of NPC, and may represent a novel therapeutic target for NPC treatment.


Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells.

  • Z Wang‎ et al.
  • Cell death & disease‎
  • 2014‎

Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC.Cell Death and Disease (2014) 5, e1563; doi:10.1038/cddis.2014.503; published online 11 December 2014.


Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin's lymphoma cells.

  • X Zeng‎ et al.
  • Cell death & disease‎
  • 2013‎

Arginase, an arginine-degrading enzyme, has gained increased attention recently as a new experimental therapeutics for a variety of malignant solid cancers. In this study, we found that recombinant human arginase (rhArg) could induce remarkable growth inhibition, cell cycle arrest, and caspase-dependent apoptosis in Raji and Daudi non-Hodgkin's lymphoma (NHL) cells through arginine deprivation. Interestingly, rhArg-treatment resulted in the appearance of autophagosomes and upregulation of microtubule-associated protein light chain 3 II, indicating that rhArg induced autophagy in lymphoma cells. Further study suggested that mammalian target of rapamycin/S6k signaling pathway may be involved in rhArg-induced autophagy in NHL cells. Moreover, blocking autophagy using pharmacological inhibitors (3-methyladenine and chloroquine) or genetic approaches (small interfering RNA targeting autophagy-related gene 5 and Beclin-1) enhanced the cell killing effect of rhArg. These results demonstrated that rhArg has a potent anti-lymphoma activity, which could be improved by in combination with autophagic inhibitors, suggesting that rhArg, either alone or in combination with autophagic inhibitors, could be a potential novel therapeutics for the treatment of NHL.


Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.

  • Y Sun‎ et al.
  • Cell death & disease‎
  • 2014‎

Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.


A genomic approach to predict synergistic combinations for breast cancer treatment.

  • R Soldi‎ et al.
  • The pharmacogenomics journal‎
  • 2013‎

We leverage genomic and biochemical data to identify synergistic drug regimens for breast cancer. In order to study the mechanism of the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) in breast cancer, we generated and validated genomic profiles of drug response using a series of breast cancer cell lines sensitive to each drug. These genomic profiles were then used to model drug response in human breast tumors and show significant correlation between VPA and SAHA response profiles in multiple breast tumor data sets, highlighting their similar mechanism of action. The genes deregulated by VPA and SAHA converge on the cell cycle pathway (Bayes factor 5.21 and 5.94, respectively; P-value 10(-8.6) and 10(-9), respectively). In particular, VPA and SAHA upregulate key cyclin-dependent kinase (CDK) inhibitors. In two independent datasets, cancer cells treated with CDK inhibitors have similar gene expression profile changes to the cellular response to HDAC inhibitors. Together, these results led us to hypothesize that VPA and SAHA may interact synergistically with CDK inhibitors such as PD-033299. Experiments show that HDAC and CDK inhibitors have statistically significant synergy in both breast cancer cell lines and primary 3-dimensional cultures of cells from pleural effusions of patients. Therefore, synergistic relationships between HDAC and CDK inhibitors may provide an effective combinatorial regimen for breast cancer. Importantly, these studies provide an example of how genomic analysis of drug-response profiles can be used to design rational drug combinations for cancer treatment.


Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance.

  • X Ma‎ et al.
  • Nutrition & diabetes‎
  • 2013‎

High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial.


Loss of OLFM4 promotes tumor migration through inducing interleukin-8 expression and predicts lymph node metastasis in early gastric cancer.

  • J Zhao‎ et al.
  • Oncogenesis‎
  • 2016‎

Endoscopic surgery is increasingly used for early gastric cancer (EGC) treatment worldwide, and lymph node metastasis remains the most important risk factor for endoscopic surgery in EGC patients. Olfactomedin 4 (OLFM4) is mainly expressed in the digestive system and upregulated in several types of tumors. However, the role of OLFM4 in EGC has not been explored. We evaluated OLFM4 expression by immunohistochemical staining in 105 patients with EGC who underwent gastrectomy. The clinicopathological factors and OLFM4 expression were co-analyzed to predict lymph node metastasis in EGC. The metastatic mechanism of OLFM4 in gastric cancer was also investigated. We found that OLFM4 was upregulated in EGC tumor sections, and relatively low expression of OLFM4 was observed in patients with lymph node metastasis. OLFM4 expression as well as tumor size and differentiation were identified as independent factors, which could be co-analyzed to generate a better model for predicting lymph node metastasis in EGC patients. In vitro studies revealed that knockdown of OLFM4 promoted the migration of gastric cancer cells through activating the NF-κB/interleukin-8 axis. Negative correlation between OLFM4 and interleukin-8 expression was also observed in EGC tumor samples. Our study implies that OLFM4 expression is a potential predictor of lymph node metastasis in EGC, and combing OLFM4 with tumor size and differentiation could better stratify EGC patients with different risks of lymph node metastasis.


Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms.

  • K L Rice‎ et al.
  • Blood cancer journal‎
  • 2011‎

Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3-23.3 (n=1), 9q33.1-34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31-36.33 (n=6), 17q21.2-q21.31 (n=5) and 17q25.1-25.3 (n=5) and deletions affecting 18p11.31-11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a 'HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal.


OPV-like poliovirus type 1 detection in patients with severe acute respiratory syndrome.

  • H Shen‎ et al.
  • Infection‎
  • 2012‎

No abstract available


Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing.

  • T Wu‎ et al.
  • Bone & joint research‎
  • 2018‎

As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing.


Ferroelectric P(VDF-TrFE)/POSS nanocomposite films: compatibility, piezoelectricity, energy harvesting performance, and mechanical and atomic oxygen erosion.

  • Y Z Liu‎ et al.
  • RSC advances‎
  • 2020‎

Poly(vinylidene difluoride) (PVDF) and its copolymers as the polymers with the highest piezoelectric coefficient have been widely used as sensors and generators. However, their relatively low performances limit their applications in some harsh environments. In this work, piezoelectric poly(vinylidene-trifluoroethylene) P(VDF-TrFE) matrices with different amounts of polyhedral oligomeric silsesquioxane (POSS) were prepared by a low temperature solvent evaporation method and thermal poling. The morphology, surface performance, crystalline phase, and piezoelectric and ferroelectric properties of the nanocomposites were investigated and the influence of POSS on these performances was studied. POSS had good compatibility with P(VDF-TrFE) and did not affect the crystalline phase formation of the matrix. The composites presented good piezoelectric properties. Piezo- and triboelectric nanogenerators were designed and fabricated. The voltage and current outputs were analyzed and the polarization effect was evaluated. The average output voltage and the current density of the matrix were 3 V and 0.5 μA cm-2 when subjected to a force of 38 N on an area of 1 cm2. The mechanical properties of P(VDF-TrFE)/POSS nanocomposites were also studied by the nanoindentation test. The hardness and modulus of samples increased 20% and 17% with a low addition of POSS. Atomic oxygen erosion properties of the composites were numerically simulated by the Monte Carlo method. The erosion cavity shape and depth were compared and studied. The influence of POSS addition on the P(VDF-TrFE) matrix and the associated reinforcing mechanism were analyzed.


Penpulimab combined with anlotinib in patients with R/M HNSCC after failure of platinum-based chemotherapy: a single-arm, multicenter, phase Ⅱ study.

  • Y Shi‎ et al.
  • ESMO open‎
  • 2023‎

Treatment regimens for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) after failure of platinum-based chemotherapy have been illustrated with limited efficacy.


Effects of D2 dopamine receptor agonist and antagonist on brain activity in the rat assessed by functional magnetic resonance imaging.

  • H Hagino‎ et al.
  • Brain research‎
  • 1998‎

The effects of D2 dopamine receptor agonist, bromocriptine (BROMO), and antagonist, haloperidol (HPD), on brain activity were investigated in rats by functional magnetic resonance imaging. T2*-weighted signal intensity was increased in the hypothalamus at 120 min after acute administration of BROMO, and in the ventral posterior and dorsomedial nuclei of the thalamus from 30 to 120 min. In contrast, the signal intensity was decreased in the caudate-putamen at 30 min after acute administration of HPD, in the hypothalamus from 30 to 60 min, and in the perirhinal cortex at 30 min. After chronic (2 weeks) HPD treatment, acute administration of HPD decreased signal intensity in the caudate-putamen at 60 min, in the hypothalamus at 30 min, the perirhinal cortex from 2 to 120 min, the dorsomedial and ventral posterior nuclei of the thalamus from 2 to 120 min, and the medial nucleus of the amygdala from 60 to 120 min. These results suggest that (1) the D2 receptor agonist increased the activity of the thalamic nuclei and the hypothalamus, while the D2 receptor antagonist suppressed brain activity in the regions where D2 receptors were present, (2) the suppression of brain activity in the thalamic nuclei and the perirhinal cortex by acute HPD administration was enhanced by chronic HPD treatment, and (3) the effects of antipsychotic drugs on the thalamus, amygdala, and perirhinal cortex may be related to their therapeutic efficacy, since clinical improvement in schizophrenic patients appears several days after the start of HPD treatment.


Effects of platelet-activating factor and its differential regulation by androgens and steroid hormones in prostate cancers.

  • B Xu‎ et al.
  • British journal of cancer‎
  • 2013‎

Platelet-activating factor (PAF) is an arachidonic acid metabolite that plays an important role in cell proliferation, migration and neoangiogenesis, but whether it is involved in the progression of prostate cancer remains undiscovered.


The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway.

  • Y Sun‎ et al.
  • Oncogene‎
  • 2015‎

Eyes absent 1 (Eya1) is a conserved critical regulator of organ-specific stem cells. Ectopic Eya1 activities, however, promote transformation of mammary epithelial cells. Signals that instigate Eya1 oncogenic activities remain to be determined. Here, we show that Akt1 kinase physically interacts with Eya1 and phosphorylates a conserved consensus site of the Akt kinase. PI3K/Akt signaling enhances Eya1 transcription activity, which largely attributes to the phosphorylation-induced reduction of Eya1 SUMOylation. Indeed, SUMOylation inhibits Eya1 transcription activity; and pharmacologic and genetic activation of PI3K/Akt robustly reduces Eya1 SUMOylation. Wild-type but not Akt phosphorylation site mutant Eya1 variant rescues the cell migratory phenotype of EYA1-silenced breast cancer cells, highlighting the importance of Eya1 phosphorylation. Furthermore, knockdown EYA1 sensitizes breast cancer cells to the PI3K/Akt1 inhibitor and irradiation treatments. Thus, the PI3K/Akt signal pathway activates Eya1. These findings further suggest that regulation of SUMOylation by PI3K/Akt signaling is likely an important aspect of tumorigenesis.


NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis.

  • J Yao‎ et al.
  • Cell death & disease‎
  • 2014‎

The transcriptional factors nuclear factor-κB (NF-κB) and NF-E2-related factor 2 (Nrf2) have been recently reported to have critical roles in protecting various tissues against inflammation and colitis-associated colorectal cancer (aberrant crypt foci). Our previous studies showed that wogonin (5,7-dihydroxy-8-methoxyflavone) possessed anti-neoplastic and anti-inflammatory activities. The present study extended these important earlier findings by exploring the effect of wogonin on the initiation and development of colitis-associated cancer. Wogonin lowered tumor incidence and inhibited the development of colorectal adenomas in azoxymethane- or dextran sulfate sodium-induced mice. We found that wogonin significantly decreased the secretion and expression of IL-6 and IL-1β, reduced cell proliferation and nuclear expression of NF-κB in adenomas and surrounding tissues and promoted Nrf2 nuclear translocation in surrounding tissues, although overexpressed Nrf2 in tumor tissues was independent of wogonin administration. Furthermore, wogonin inhibited the interaction between human monocytic THP-1 cells and human colon cancer HCT116 cells, and significantly downregulated lipopolysaccharide-induced secretion of prototypical pro-inflammatory cytokines IL-6 and IL-1β in THP-1 cells. Further mechanism research revealed that wogonin inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β, and promoted Nrf2 signaling pathway in HCT116 cells and THP-1 cells. Taken together, the present results indicated that wogonin effectively suppressed inflammation-associated colon carcinogenesis and cancer development, suggesting its potential as a chemopreventive agent against colitis-associated colon cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: