Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress.

  • Lin Zhou‎ et al.
  • Horticulture research‎
  • 2014‎

Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins.


Metal transport protein 8 in Camellia sinensis confers superior manganese tolerance when expressed in yeast and Arabidopsis thaliana.

  • Qinghui Li‎ et al.
  • Scientific reports‎
  • 2017‎

Manganese (Mn) is an important micronutrient element required for plant growth and development, playing catalytic roles in enzymes, membranes and DNA replication. The tea plant (Camellia sinensis) is able to accumulate high concentration of Mn without showing signs of toxicity, but the molecular mechanisms underlying this remain largely unknown. In this study, the C. sinensis cultivar 'LJCY' had higher Mn tolerance than cultivar 'YS', because chlorophyll content reduction was lower under the high Mn treatment. Proteomic analysis of the leaves revealed that C. sinensis Metal Tolerance Protein 8 (CsMTP8) accumulated in response to Mn toxicity in cultivar 'LJCY'. The gene encoding CsMTP8, designated as CsMTP8 was also isolated, and its expression enhanced Mn tolerance in Saccharomyces cerevisiae. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana increased plant tolerance and reduced Mn accumulation in plant tissues under excess Mn conditions. Subcellular localization analysis of green florescence fused protein indicated that CsMTP8 was localized to the plasma membranes. Taken together, the results suggest that CsMTP8 is a Mn-specific transporter, which is localized in the plasma membrane, and transports excess Mn out of plant cells. The results also suggest that it is needed for Mn tolerance in shoots.


Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars.

  • Jiazhi Shen‎ et al.
  • Horticulture research‎
  • 2018‎

Purple-leaf tea plants, as anthocyanin-rich cultivars, are valuable materials for manufacturing teas with unique colors or flavors. In this study, a new purple-leaf cultivar "Zixin" ("ZX") was examined, and its biochemical variation and mechanism of leaf color change were elucidated. The metabolomes of leaves of "ZX" at completely purple, intermediately purple, and completely green stages were analyzed using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Metabolites in the flavonoid biosynthetic pathway remained at high levels in purple leaves, whereas intermediates of porphyrin and chlorophyll metabolism and carotenoid biosynthesis exhibited high levels in green leaves. In addition, fatty acid metabolism was more active in purple leaves, and steroids maintained higher levels in green leaves. Saponin, alcohol, organic acid, and terpenoid-related metabolites also changed significantly during the leaf color change process. Furthermore, the substance changes between "ZX" and "Zijuan" (a thoroughly studied purple-leaf cultivar) were also compared. The leaf color change in "Zijuan" was mainly caused by a decrease in flavonoids/anthocyanins. However, a decrease in flavonoids/anthocyanins, an enhancement of porphyrin, chlorophyll metabolism, carotenoid biosynthesis, and steroids, and a decrease in fatty acids synergistically caused the leaf color change in "ZX". These findings will facilitate comprehensive research on the regulatory mechanisms of leaf color change in purple-leaf tea cultivars.


Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature.

  • Xujun Zhu‎ et al.
  • BMC plant biology‎
  • 2019‎

Internal γ-Aminobutyric Acid (GABA) interacting with stress response substances may be involved in the regulation of differentially abundant proteins (DAPs) associated with optimum temperature and cold stress in tea plants (Camellia sinensis (L.) O. Kuntze).


Transcriptome Analysis Reveals the Mechanism of Fluoride Treatment Affecting Biochemical Components in Camellia sinensis.

  • Jiaojiao Zhu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Tea (Camellia sinensis (L.) O. Kuntze), one of the main crops in China, is high in various bioactive compounds including flavonoids, catechins, caffeine, theanine, and other amino acids. C. sinensis is also known as an accumulator of fluoride (F), and the bioactive compounds are affected by F, however, the mechanism remains unclear. Here, the effects of F treatment on the accumulation of F and major bioactive compounds and gene expression were investigated, revealing the molecular mechanisms affecting the accumulation of bioactive compounds by F treatment. The results showed that F accumulation in tea leaves gradually increased under exogenous F treatments. Similarly, the flavonoid content also increased in the F treatment. In contrast, the polyphenol content, free amino acids, and the total catechins decreased significantly. Special amino acids, such as sulfur-containing amino acids and proline, had the opposite trend of free amino acids. Caffeine was obviously induced by exogenous F, while the theanine content peaked after two day-treatment. These results suggest that the F accumulation and content of bioactive compounds were dramatically affected by F treatment. Furthermore, differentially expressed genes (DEGs) related to the metabolism of main bioactive compounds and amino acids, especially the pivotal regulatory genes of catechins, caffeine, and theanine biosynthesis pathways, were identified and analyzed using high-throughput Illumina RNA-Seq technology and qRT-PCR. The expression of pivotal regulatory genes is consistent with the changes of the main bioactive compounds in C. sinensis leaves, indicating a complicated molecular mechanism for the above findings. Overall, these data provide a reference for exploring the possible molecular mechanism of the accumulation of major bioactive components such as flavonoid, catechins, caffeine, theanine and other amino acids in tea leaves in response to fluoride treatment.


Genome-wide identification, characterization and expression analysis of the amino acid permease gene family in tea plants (Camellia sinensis).

  • Yu Duan‎ et al.
  • Genomics‎
  • 2020‎

Amino acid permeases (AAPs) are involved in transporting a broad spectrum of amino acids and regulating physiological processes in plants. In this study, 19 AAP genes were identified from the tea plants genome database and named CsAAP1-19. Based on phylogenetic analysis, the CsAAP genes were classified into three groups, having significantly different structures and conserved motifs. In addition, an expression analysis revealed that most of CsAAP genes were specifically expressed in different tissues, especially CsAAP19 was expressed only in root. These genes also were significantly expressed in the Baiye 1 and Huangjinya cultivars. Nitrogen treatments indicated that the CsAAPs were obviously expressed in root. CsAAP2, -6, -12, -13 and - 16 were significantly expressed at 6 d after the glutamate treatment, while the expression trend at 24 h after contained the ammonium. These results improve our understanding of the CsAAP genes and their functions in nitrogen utilization in tea plants.


Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of JAZ Family Genes in Camellia Sinensis.

  • Jiazhi Shen‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

JAZ (Jasmonate ZIM-domain) proteins play pervasive roles in plant development and defense reaction. However, limited information is known about the JAZ family in Camellia sinensis. In this study, 12 non-redundant JAZ genes were identified from the tea plant genome database. Phylogenetic analysis showed that the 12 JAZ proteins belong to three groups. The cis-elements in promoters of CsJAZ genes and CsJAZ proteins interaction networks were also analyzed. Quantitative RT-PCR analysis showed that 7 CsJAZ genes were preferentially expressed in roots. Furthermore, the CsJAZ expressions were differentially induced by cold, heat, polyethylene glycol (PEG), methyl jasmonate (MeJA), and gibberellin (GA) stimuli. The Pearson correlations analysis based on expression levels showed that the CsJAZ gene pairs were differentially expressed under different stresses, indicating that CsJAZs might exhibit synergistic effects in response to various stresses. Subcellular localization assay demonstrated that CsJAZ3, CsJAZ10, and CsJAZ11 fused proteins were localized in the cell nucleus. Additionally, the overexpression of CsJAZ3, CsJAZ10, and CsJAZ11 in E. coli enhanced the growth of recombinant cells under abiotic stresses. In summary, this study will facilitate the understanding of the CsJAZ family in Camellia sinensis and provide new insights into the molecular mechanism of tea plant response to abiotic stresses and hormonal stimuli.


Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress.

  • Zhaolan Han‎ et al.
  • PeerJ‎
  • 2021‎

MYB proteins are a large group of transcription factors. The overexpression of MYB genes has been reported to improve abiotic stress tolerance in plant. However, due to the variety of plant species studied and the types of gene donors/recipients, along with different experimental conditions, it is difficult to interpret the roles of MYB in abiotic stress tolerance from published data.


The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis.

  • Yu Duan‎ et al.
  • BMC plant biology‎
  • 2021‎

Intercropping, especially with legumes, as a productive and sustainable system, can promote plants growth and improves the soil quality than the sole crop, is an essential cultivation pattern in modern agricultural systems. However, the metabolic changes of secondary metabolites and the growth in tea plants during the processing of intercropping with soybean have not been fully analyzed.


Genome-Wide Association Studies of Biluochun Tea Plant Populations in Dongting Mountain and Comprehensive Identification of Candidate Genes Associated with Core Agronomic Traits by Four Analysis Models.

  • Xiaogang Lei‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

The elite germplasm resources are key to the beautiful appearance and pleasant flavor of Biluochun tea. We collected and measured the agronomic traits of 95 tea plants to reveal the trait diversity and breeding value of Biluochun tea plant populations. The results revealed that the agronomic traits of Biluochun tea plant populations were diverse and had high breeding value. Additionally, we resequenced these tea plant populations to reveal genetic diversity, population structure, and selection pressure. The Biluochun tea plant populations contained two groups and were least affected by natural selection based on the results of population structure and selection pressure. More importantly, four non-synonymous single nucleotide polymorphisms (nsSNPs) and candidate genes associated with (-)-gallocatechin gallate (GCG), (-)-gallocatechin (GC), and caffeine (CAF) were detected using at least two GWAS models. The results will promote the development and application of molecular markers and the utilization of elite germplasm from Biluochun populations.


Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis.

  • Yue Zhang‎ et al.
  • BMC plant biology‎
  • 2014‎

MicroRNAs (miRNAs) are approximately 19 ~ 21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs have critical functions in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interaction with specific target mRNAs. Camellia sinensis is one of the most important commercial beverage crops in the world. However, miRNAs associated with cold stress tolerance in C. sinensis remains unexplored. The use of high-throughput sequencing can provide a much deeper understanding of miRNAs. To obtain more insight into the function of miRNAs in cold stress tolerance, Illumina sequencing of C. sinensis sRNA was conducted.


GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience.

  • Bo Xu‎ et al.
  • Nature communications‎
  • 2021‎

The non-protein amino acid γ-aminobutyric acid (GABA) has been proposed to be an ancient messenger for cellular communication conserved across biological kingdoms. GABA has well-defined signalling roles in animals; however, whilst GABA accumulates in plants under stress it has not been determined if, how, where and when GABA acts as an endogenous plant signalling molecule. Here, we establish endogenous GABA as a bona fide plant signal, acting via a mechanism not found in animals. Using Arabidopsis thaliana, we show guard cell GABA production is necessary and sufficient to reduce stomatal opening and transpirational water loss, which improves water use efficiency and drought tolerance, via negative regulation of a stomatal guard cell tonoplast-localised anion transporter. We find GABA modulation of stomata occurs in multiple plants, including dicot and monocot crops. This study highlights a role for GABA metabolism in fine tuning physiology and opens alternative avenues for improving plant stress resilience.


Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress.

  • Yuhua Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.


Lifestyle Characteristics and Gene Expression Analysis of Colletotrichum camelliae Isolated from Tea Plant [Camellia sinensis (L.) O. Kuntze] Based on Transcriptome.

  • Fei Xiong‎ et al.
  • Biomolecules‎
  • 2020‎

Colletotrichum camelliae is one of the most serious pathogens causing anthracnose in tea plants, but the interactive relationship between C. camelliae and tea plants has not been fully elucidated. This study investigated the gene expression changes in five different growth stages of C. camelliae based on transcriptome analysis to explain the lifestyle characteristics during the infection. On the basis of gene ontology (GO) enrichment analyses of differentially expressed genes (DEGs) in comparisons of germ tube (GT)/conidium (Con), appressoria (App)/Con, and cellophane infectious hyphae (CIH)/Con groups, the cellular process in the biological process category and intracellular, intracellular part, cell, and cell part in the cellular component category were significantly enriched. Hydrolase activity, catalytic activity, and molecular_function in the molecular function category were particularly enriched in the infection leaves (IL)/Con group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were enriched in the genetic information processing pathway (ribosome) at the GT stage and the metabolism pathway (metabolic pathways and biosynthesis of secondary metabolism) in the rest of the stages. Interestingly, the genes associated with melanin biosynthesis and carbohydrate-active enzymes (CAZys), which are vital for penetration and cell wall degradation, were significantly upregulated at the App, CIH and IL stages. Subcellular localization results further showed that the selected non-annotated secreted proteins based on transcriptome data were majorly located in the cytoplasm and nucleus, predicted as new candidate effectors. The results of this study may establish a foundation and provide innovative ideas for subsequent research on C. camelliae.


Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia sinensis).

  • Jinqiu Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The natural resistant-associated macrophage protein (NRAMP) is a kind of integral membrane transporter which could function on a wide range of divalent metal ions in plants. Little is known about the NRAMP family in Camellia sinensis. In this study, 11 NRAMP genes were identified from the tea plant genome. Phylogenetic analysis showed that the 11 CsNRAMP proteins were split into two groups. The proteins of group 1 contained the conserved motif 6 (GQSSTxTG), while most proteins in group 2 (excepting CsNRAMP7 and CsNRAMP10) contained the conserved residues of motif 6 and motif 2 (GQFIMxGFLxLxxKKW). The number of amino acids in coding regions of 11 CsNRAMP genes ranged from 279-1373, and they contained 3-12 transmembrane domains. Quantitative RT-PCR analysis showed that G1 genes, CsNRAMP3, CsNRAMP4, and CsNRAMP5, were extraordinarily expressed in roots, while G2 genes showed higher expression levels in the stems and leaves. The expression levels of CsNRAMPs in roots and leaves were detected to assess their responses to Pb treatment. The results indicated that CsNRAMPs were differentially regulated, and they might play a role in Pb transportation of tea plant. Subcellular localization assay demonstrated that CsNRAMP2 and CsNRAMP5 fused proteins were localized in the plasma membrane. Overall, this systematic analysis of the CsNRAMP family could provide primary information for further studies on the functional roles of CsNRAMPs in divalent metal transportation in tea plants.


miR-374a promotes cell proliferation, migration and invasion by targeting SRCIN1 in gastric cancer.

  • Xinyun Xu‎ et al.
  • FEBS letters‎
  • 2015‎

MicroRNAs (miRNAs) play a prominent role in gastric cancer (GC) initiation and progression. In this study, we found that miR-374a expression was up-regulated in human GC cell lines and tissues. Inhibition of miR-374a suppressed GC cell proliferation, migration and invasion in vitro and slowed tumor growth in vivo. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target of miR-374a. Silencing of SRCIN1 significantly enhanced cell proliferation, migration and invasion, whereas SRCIN1 reintroduction partially abrogated the oncogenic effects of miR-374a. Taken together, these findings suggest that miR-374a functions as a candidate oncogene in GC by directly targeting SRCIN1. miR-374a may therefore be useful as a promising therapeutic target for malignant GC.


Genome-wide analysis of the SBP-box gene family transcription factors and their responses to abiotic stresses in tea (Camellia sinensis).

  • Dayan Zhang‎ et al.
  • Genomics‎
  • 2020‎

SQUAMOSA promoter-binding protein (SBP)-box gene family is one kind of plant-specific transcription factor that plays important roles in the process of resisting abiotic stress. The SBP-box gene family has been studied in many species, but their functions are not yet clear in Camellia sinensis var. sinensis (CSS) (tea) plants. In our study, 25 SBP-box genes in the CSS were identified in the reference genome and classified into six groups based on a phylogenetic tree. The expression pattern of CsSBP genes under temperature stresses showed that CsSBPs were involved in the process of resisting temperature stresses. CsSBP8 had a positive effect on the anthocyanin accumulation during high temperature exposures, but CsSBP12 has a high correlation with anthocyanin accumulation during both high and low temperature. This study provides a foundation for the further study of CsSBP genes involved in the anthocyanin biosynthesis pathway during the temperature stress in tea.


CsMYB Transcription Factors Participate in Jasmonic Acid Signal Transduction in Response to Cold Stress in Tea Plant (Camellia sinensis).

  • Zhaolan Han‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Low-temperature stress is an increasing problem for the cultivation of tea (Camellia sinensis), with adverse effects on plant growth and development and subsequent negative impacts on the tea industry. Methyl jasmonate (MeJA), as a plant inducer, can improve the cold-stress tolerance in tea plants. R2R3-MYB transcription factors (TFs) are considered potentially important regulators in the resistance to cold stress in plants. However, the molecular mechanisms, by which MYB TFs via the jasmonic acid pathway respond to cold stress in the tea plant, remain unknown. In this study, physiological and biochemical assays showed that exogenous MeJA application could effectively promote ROS scavenging in the tea plant under cold stress, maintaining the stability of the cell membrane. Sixteen R2R3-MYB TFs genes were identified from the tea plant genome database. Quantitative RT-PCR analysis showed that three CsMYB genes were strongly induced under a combination of MeJA and cold-stress treatment. Subcellular localization assays suggest CsMYB45, CsMYB46, and CsMYB105 localized in the nucleus. Exogenous MeJA treatment enhanced the overexpression of CsMYB45, CsMYB46, and CsMYB105 in E. coli and improved the growth and survival rates of recombinant cells compared to an empty vector under cold stress. Yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that CsMYB46 and CsMYB105 interacted with CsJAZ3, CsJAZ10, and CsJAZ11 in the nucleus. Taken together, these results highlight that CsMYB45, CsMYB46, and CsMYB105 are not only key components in the cold-stress signal response pathway but also may serve as points of confluence for cold stress and JA signaling pathways. Furthermore, our findings provide new insight into how MYB TFs influence cold tolerance via the jasmonic acid pathway in tea and provide candidate genes for future functional studies and breeding.


CsCuAO1 Associated with CsAMADH1 Confers Drought Tolerance by Modulating GABA Levels in Tea Plants.

  • Yu Cao‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: