Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

  • Xixi Song‎ et al.
  • Gene‎
  • 2016‎

Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.


Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases.

  • Yunxing Zhang‎ et al.
  • PeerJ‎
  • 2016‎

Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.


Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance.

  • Mingying Liu‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants.


Targeted next-generation sequencing identifies a novel mutation of LAMB3 in a Chinese neonatal patient presented with junctional epidermolysis bullosa.

  • Hairong Wang‎ et al.
  • Medicine‎
  • 2018‎

Epidermolysis bullosa (EB) refers to a group of rare inherited mechanobullous disorders that present with great clinical and genetic heterogeneity. Its severity ranges from mild blistering to life-threatening. However, the clinical symptoms of different types of EB overlap significantly, especially at an early stage. Thus it is important to clarify the diagnosis for prognostic implications, patient management, and genetic counseling.


A Heterozygous Novel Mutation in TFAP2A Gene Causes Atypical Branchio-Oculo-Facial Syndrome With Isolated Coloboma of Choroid: A Case Report.

  • Jie Min‎ et al.
  • Frontiers in pediatrics‎
  • 2020‎

Background: Branchio-oculo-facial syndrome (BOFS) is a rare congenital developmental disorder with highly variable clinical phenotypes in autosomal dominant inheritance. The aim of this study is to identify disease-causing mutations in a Chinese family with predominant coloboma of choroid. Case report: We described a family (a mother and her daughter) with unclear clinical diagnosis. The mother (proband) presented with bilateral coloboma of choroid, whereas her daughter had a relatively severe phenotype and presented with larger bilateral choroid coloboma and high-vaulted arch. We applied the next generation sequencing (NGS) panel and analyzed 776 genes related to inherited ocular disorders on the proband. Four candidate heterozygous variants in four genes, respectively, were detected in the proband. Validation of these variants were subsequently performed in the family using Sanger sequencing. Among these variants, a novel nonsense mutation c.912C>A, p.(Cys304*) (NM_001042425.2) which in exon 6 of the conserved helix-span-helix domain in TFAP2A results in a premature termination codon. It may trigger nonsense-mediated mRNA decay (NMD). Both the affected mother and daughter had this variant, whereas it was absent in the asymptomatic father. Together with the silicon tools and clinical features, we concluded that the variant c.912C>A, p.(Cys304*), was the second reported nonsense mutation in TFAP2A gene, which was the disease-causing mutation of the family. Conclusion: There are many hereditary diseases accompanied by ocular anomalies. For instance, BOFS, patients with atypical features are always at risk of being under-diagnosed. NGS is a powerful method to identify the genetic cause and improve genetic counseling for less clarified hereditary ocular diseases.


Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance.

  • Tongyu Feng‎ et al.
  • Scientific reports‎
  • 2020‎

Cd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.


Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.

  • Qinjie Weng‎ et al.
  • Cell stem cell‎
  • 2019‎

The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.


Variants in BSN gene associated with epilepsy with favourable outcome.

  • Tingting Ye‎ et al.
  • Journal of medical genetics‎
  • 2023‎

BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy.


Effect of SOD2 methylation on mitochondrial DNA4834-bp deletion mutation in marginal cells under oxidative stress.

  • Jun Li‎ et al.
  • Bosnian journal of basic medical sciences‎
  • 2020‎

Presbycusis, or age-related hearing loss, is a prevalent disease that severely affects the physical and mental health of the elderly. Oxidative stress and mitochondrial (mt)DNA deletion mutation are considered as major factors in the pathophysiology of age-related hearing loss. The 4977-bp deletion in human mtDNA (common deletion, corresponding to the 4834-bp mtDNA deletion in rats) is suggested to be closely associated with the pathogenesis of age-related hearing loss. Superoxide dismutase 2 (SOD2), an isoform of SOD that is exclusively expressed in the intracellular mitochondrial matrix, plays a crucial role in oxidative resistance against mitochondrial superoxide. Previous research has shown that methylation of the promoter region of the SOD2 gene decreased the expression of SOD2 in marginal cells (MCs) extracted from the inner ear of rats subjected to D-galactose-induced mtDNA4834 deletion. However, the relationship between SOD2 methylation and mtDNA4834 deletion under oxidative stress remains to be elucidated. Herein, an oxidative damage model was established in the extracted MCs using hydrogen peroxide (H2O2), which increased the methylation level of SOD2 and the copy number of mtDNA4834 mutation in MCs. Decreasing the methylation level of SOD2 using 5-azacytidine, a DNA methylation inhibitor, reduced oxidative stress and the copy number of mtDNA4834 mutation and inhibited H2O2-induced apoptosis. The present work demonstrates that decreasing the methylation of SOD2 suppresses the mtDNA4834 deletion in MCs under oxidative stress and provides potential insights to the intervention therapy of aging-related hearing loss.


Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination.

  • Danyang He‎ et al.
  • Nature neuroscience‎
  • 2016‎

Mutations in CHD7, encoding ATP-dependent chromodomain helicase DNA-binding protein 7, in CHARGE syndrome lead to multiple congenital anomalies, including craniofacial malformations, neurological dysfunction and growth delay. Mechanisms underlying the CNS phenotypes remain poorly understood. We found that Chd7 is a direct transcriptional target of oligodendrogenesis-promoting factors Olig2 and Smarca4/Brg1 and is required for proper onset of CNS myelination and remyelination. Genome-occupancy analyses in mice, coupled with transcriptome profiling, revealed that Chd7 interacted with Sox10 and targeted the enhancers of key myelinogenic genes. These analyses identified previously unknown Chd7 targets, including bone formation regulators Osterix (also known as Sp7) and Creb3l2, which are also critical for oligodendrocyte maturation. Thus, Chd7 coordinates with Sox10 to regulate the initiation of myelinogenesis and acts as a molecular nexus of regulatory networks that account for the development of a seemingly diverse array of lineages, including oligodendrocytes and osteoblasts, pointing to previously uncharacterized Chd7 functions in white matter pathogenesis in CHARGE syndrome.


Severe congenital microcephaly with 16p13.11 microdeletion combined with NDE1 mutation, a case report and literature review.

  • Li Tan‎ et al.
  • BMC medical genetics‎
  • 2017‎

Microcephaly is a disorder characterized by severe impairment in brain development, reduced brain and head size. Congenital severe microcephaly is very rare, and NDE1 deletion and genetic mutations are important contributors.


Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation.

  • Yang Yu‎ et al.
  • Cell‎
  • 2013‎

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Functional Analysis of a Novel CLN5 Mutation Identified in a Patient With Neuronal Ceroid Lipofuscinosis.

  • Sukun Luo‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive inherited neurodegenerative disorders mainly affecting children, and at least 13 causative genes (CLN1 to CLN8 and CLN10 to CLN14) have been identified. Here, we reported a novel homozygous missense mutation (c.434G > C, p.Arg145Pro) identified in CLN5 gene via whole exome sequencing in a 5-year-old girl. The patient first presented paroxysmal epilepsy associated with vomiting, followed by progressive regression in walking, vision, intelligence and speaking. Combining the molecular and clinical analysis, the diagnosis of NCL could be made, although the missense mutation (c.434G > C, p.Arg145Pro) in CLN5 was evaluated to be a variant of uncertain significance according to American College of Medical Genetics and Genomics (ACMG) standard. We further performed expression and localization studies and our results provide evidence of impaired cellular trafficking of CLN5 to lysosome, indicating that this mutation might be deleterious to the function of CLN5 for its mislocalization. Our study demonstrated the efficacy of next generation sequencing in molecular diagnosis, and a deleterious effect of the variant discovered in our patient on CLN5, triggering the NCL disease.


Prenatal Genetic Diagnosis in Three Fetuses With Left Heart Hypoplasia (LHH) From Three Unrelated Families.

  • Sukun Luo‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Background: Congenital heart defects (CHDs) are the most common birth defects, and left heart hypoplasia (LHH) is a severe form of CHD and responsible for more than 20% cardiac deaths during the first week of life, however, its genetic causes remain largely elusive. Methods: Three families with fetal LHH were recruited. Genomic DNA from amniotic fluid or peripheral blood, and trio whole exome sequencing (trio-WES) and copy number variation sequencing (CNV-seq) were performed. Results: All the three couples had no family history, and mid-gestation ultrasound revealed LHH and other variable cardiovascular defects in the fetuses. Trio-WES revealed de novo pathogenic variations in KMT2D (p.Gly3465Aspfs*37) (NM_003482) and WDFY3 (p.Ser117Xfs*) (NM_014991), and CNV-seq identified a deletion of 150 kb encompassing NOTCH1. KMT2D and NOTCH1 previously have been reported to be associated with CHDs, however, WDFY3 is reported for the first time to be possibly related to CHD in human. Conclusion: Our study suggested that genetic component is an important risk factor for the development of LHH, and next generation sequencing is a powerful tool for genetic diagnosis in fetuses with CHDs and genetic counseling, however, more studies and data are need to establish the correlation of fetal phenotypes and genotypes.


Dominant Effects of Short-Chain Branching on the Initial Stage of Nucleation and Formation of Tie Chains for Bimodal Polyethylene as Revealed by Molecular Dynamics Simulation.

  • Yanling Hu‎ et al.
  • Polymers‎
  • 2019‎

The molecular mechanism of short-chain branching (SCB), especially the effects of methylene sequence length (MSL) and short-chain branching distribution (SCBD) on the initial stage of nucleation, the crystallization process, and particularly the tie chain formation process of bimodal polyethylene (BPE), were explored using molecular dynamics simulation. This work constructed two kinds of BPE models in accordance with commercial BPE pipe resins: SCB incorporated in the long chain or in the short chains. The initial stage of nucleation was determined by the MSL of the system, as the critical MSL for a branched chain to nucleate is about 60 CH2. SCB incorporated in the long chain led to a delay of the initial stage of nucleation relative to the case of SCB incorporated in the short chains. The increase of branch length could accelerate the delay to nucleation. The location of short chain relative to the long chain depended on the MSL of the short chain. As the MSL of the system decreased, the crystallinity decreased, while the tie chains concentration increased. The tie chains concentration of the BPE model with branches incorporated in the long chain was higher than that with branches incorporated in the short chain.


Three de novo variants in KMT2A (MLL) identified by whole exome sequencing in patients with Wiedemann-Steiner syndrome.

  • Sukun Luo‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2021‎

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder characterized by short stature, hypertrichosis, intellectual disability, developmental delay, along with facial dysmorphism. WSS patients exhibit great phenotypic heterogeneities. Some variants in KMT2A (MLL) gene have been identified as the cause of WSS.


Identification and characterization of a new variation in DPM2 gene in two Chinese siblings with mild intellectual impairment.

  • Peiwei Zhao‎ et al.
  • Frontiers in genetics‎
  • 2023‎

Introduction: Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of metabolic disorders caused by abnormal protein or lpid glycosylation. DPM2 is one subunit of a heterotrimeric complex for dolichol-phosphatemannose synthase (DPMS), a key enzyme in glycosylation, and only four patients with DPM2-CDG have been reported. Methods: Whole-exome sequencing (WES) was performed in a Chinese family having two siblings with a mild form of DPM2-CDG with developmental delay, mild intellectual disability, hypotonia, and increased serum creatine kinase. Sanger sequencing was used to validate the variants identified in the siblings and their parents. In vitro functional study was performed. Results: A homozygous mutation, c.197G>A (p.Gly66Glu) in exon 4 of DPM2 (NM_003863) was identified by whole exome sequencing (WES). In vitro functional analysis demonstrated that this variant increased the expression level of DPM2 protein and western blot revealed a significant decrease in ICAM1, a universal biomarker for hypoglycosylation in patients with CDG, suggesting abnormal N-linked glycosylation. We also reviewed the 4 previously reported patients carrying homozygous or compound heterozygous variants of DMP2 gene, and found that patients with variants within the region encoding the first domain had more severe clinical symptoms than those with variants within the second domain. However, the actual genotype-phenotype relationship needs more study. Discussion: Overall, our study broadens the variant spectrum of DPM2 gene, attempts to explain the different phenotypes in patients with different DPM2 variants, and emphasizes the need of further functional studies to understand the underlying pathophysiology of the phenotypic heterogeneity.


Activated phosphoinositide 3-kinase δ syndrome caused by PIK3CD mutations: expanding the phenotype.

  • Peiwei Zhao‎ et al.
  • Pediatric rheumatology online journal‎
  • 2024‎

Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed.


MicroRNA-mediated control of oligodendrocyte differentiation.

  • Xianghui Zhao‎ et al.
  • Neuron‎
  • 2010‎

MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating deficits despite an expansion of the oligodendrocyte progenitor pool. To search for miRNAs responsible for the induction of oligodendrocyte maturation, we identified miR-219 and miR-338 as oligodendrocyte-specific miRNAs in spinal cord. Overexpression of these miRNAs is sufficient to promote oligodendrocyte differentiation. Additionally, blockage of these miRNA activities in oligodendrocyte precursor culture and knockdown of miR-219 in zebrafish inhibit oligodendrocyte maturation. miR-219 and miR-338 function in part by directly repressing negative regulators of oligodendrocyte differentiation, including transcription factors Sox6 and Hes5. These findings illustrate that miRNAs are important regulators of oligodendrocyte differentiation, providing new targets for myelin repair.


Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma.

  • Fanghui Lu‎ et al.
  • Cancer cell‎
  • 2016‎

Malignant gliomas exhibit extensive heterogeneity and poor prognosis. Here we identify mitotic Olig2-expressing cells as tumor-propagating cells in proneural gliomas, elimination of which blocks tumor initiation and progression. Intriguingly, deletion of Olig2 resulted in tumors that grow, albeit at a decelerated rate. Genome occupancy and expression profiling analyses reveal that Olig2 directly activates cell-proliferation machinery to promote tumorigenesis. Olig2 deletion causes a tumor phenotypic shift from an oligodendrocyte precursor-correlated proneural toward an astroglia-associated gene expression pattern, manifest in downregulation of platelet-derived growth factor receptor-α and reciprocal upregulation of epidermal growth factor receptor (EGFR). Olig2 deletion further sensitizes glioma cells to EGFR inhibitors and extends the lifespan of animals. Thus, Olig2-orchestrated receptor signaling drives mitotic growth and regulates glioma phenotypic plasticity. Targeting Olig2 may circumvent resistance to EGFR-targeted drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: