Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

The Arabidopsis general transcription factor TFIIB1 (AtTFIIB1) is required for pollen tube growth and endosperm development.

  • Jing-Jing Zhou‎ et al.
  • Journal of experimental botany‎
  • 2013‎

Pollen tube growth and endosperm development are important for fertilization and seed formation. The genetic mechanism of the processes remains poorly understood. This study reports the functional characterization of AtTFIIB1 in pollen tube growth and endosperm development. AtTFIIB1 shares 86% and 44% similarity with AtTFIIB2 and AtTFIIB3/AtpBRP2, respectively. It is expressed in many tissues including vegetative nuclei and generative cells of pollen grains and pollen tubes, endosperm, and embryos. It is thus different from AtTFIIB2, whose expression is not found in the endosperm and vegetative nucleus of mature pollen, and AtTFIIB3/AtpBRP2, which is expressed mostly in male gametophytes and weakly in seeds. Mutations in AtTFIIB1 caused a drastic retardation of pollen tube growth and endosperm development, as well as impaired pollen tube guidance and reception, leading to disruption of fertilization and seed development. Expression of AtTFIIB2 driven by the AtTFIIB1 promoter could restore the defective pollen tube growth, guidance, and reception completely, but only partially recovered the seed development in attfiib1, whilst expression of AtTFIIB3/AtpBRP2 driven by the AtTFIIB1 promoter could rescue only the defective attfiib1 seeds. All these results suggest that AtTFIIB1 plays important roles in pollen tube growth, guidance, and reception as well as endosperm development and is partially functionally different from AtTFIIB2 and AtTFIIB3/AtpBRP2.


MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization.

  • Yan Liang‎ et al.
  • PLoS genetics‎
  • 2013‎

Pollen tube reception involves a pollen tube-synergid interaction that controls the discharge of sperm cells into the embryo sac during plant fertilization. Despite its importance in the sexual reproduction of plants, little is known about the role of gene regulation in this process. We report here that the pollen-expressed transcription factors MYB97, MYB101 and MYB120 probably control genes whose encoded proteins play important roles in Arabidopsis thaliana pollen tube reception. They share a high amino acid sequence identity and are expressed mainly in mature pollen grains and pollen tubes. None of the single or double mutants of these three genes exhibited any visible defective phenotype. Although the myb97 myb101 myb120 triple mutant was not defective in pollen development, pollen germination, pollen tube growth or tube guidance, the pollen tubes of the triple mutants exhibited uncontrolled growth and failed to discharge their sperm cells after entering the embryo sac. In addition, the myb97 myb101 myb120 triple mutation significantly affected the expression of a group of pollen-expressed genes in mature pollen grains. All these results indicate that MYB97, MYB101 and MYB120 participate in pollen tube reception, possibly by controlling the expression of downstream genes.


Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference.

  • Jia-Xin Chen‎ et al.
  • Behavioural brain research‎
  • 2017‎

Morphine, commonly used to relieve the acute or chronic pain, has a high potential for addiction and exerts rewarding effects via a critical role for mesolimbic dopamine system. Studies suggest that addiction-related behavior is highly associated with inflammatory immune response, but the mechanisms are poorly understood. The present study showed that intra-VTA microinjection of TLR4 antagonist LPS-RS prevented the acquisition and maintenance, but not the expression, of morphine-induced CPP in rats. In addition, chronic morphine treatment significantly activated STAT3 on day 6 and 11 in VTA, and bilateral microinjection of STAT3 inhibitor S3I-201 into the VTA suppressed the acquisition and maintenance of morphine-induced CPP in rats. Furthermore, local knockout of STAT3 by injection of the AAV-Cre-GFP into the VTA area of STAT3flox/flox mice also significantly impaired the acquisition of morphine CPP. Importantly, the TLR4 expression is colocalized with p-STAT3-positive cell in VTA, and repeated injection of LPS-RS significantly attenuated the STAT3 activation in VTA induced by chronic morphine treatment. Collectively, these data suggest that TLR4/STAT3 signaling pathway in VTA might play a critical role in the acquisition and maintenance of morphine CPP, and provides new evidence that TLR4/STAT3 signaling pathway might be a potential target for treatment of morphine addiction.


Efatutazone and T0901317 exert synergistically therapeutic effects in acquired gefitinib-resistant lung adenocarcinoma cells.

  • Jie Ni‎ et al.
  • Cancer medicine‎
  • 2018‎

The development of acquired EGFR-TKI therapeutic resistance is still a serious clinical problem in the management of lung adenocarcinoma. Peroxisome proliferator activated receptor gamma (PPARγ) agonists may exhibit anti-tumor activity by transactivating genes which are closely associated with cell proliferation, apoptosis, and differentiation. However, it remains not clear whether efatutazone has similar roles in lung adenocarcinoma cells of gefitinib resistant such as HCC827-GR and PC9-GR. It has been demonstrated by us that efatutazone prominently increased the mRNA and protein expression of PPARγ, liver X receptor alpha (LXRα),as well as ATP binding cassette subfamily A member 1 (ABCA1). In the presence of GW9662 (a specific antagonist of PPARγ) or GGPP (a specific antagonist of LXRα), efatutazone (40 μmol/L) restored the proliferation of both HCC827-GR and PC9-GR cells and obviously inhibited the increased protein and mRNA expression of PPAR-gamma, LXR-alpha, and ABCA1 induced by efatutazone. LXRα knockdown by siRNA (si-LXRα) significantly promoted the HCC827-GR and PC9-GR cells proliferation, whereas incubation efatutazone with si-LXRα restored the proliferation ability compared with the control group. In addition, combination of efatutazone and LXRα agonist T0901317 showed a synergistic therapeutic effect on lung adenocarcinoma cell proliferation and PPAR gamma, LXR A and ABCA1 protein expression. These results indicate that efatutazone could inhibit the cells proliferation of HCC827-GR and PC9-GR through PPARγ/LXRα/ABCA1 pathway, and synergistic therapeutic effect is achieved when combined with T0901317.


The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis.

  • Chuan Xia‎ et al.
  • The Plant journal : for cell and molecular biology‎
  • 2010‎

Previous studies have shown that subunits E (eIF3e), F (eIF3f) and H (elF3h) of eukaryotic translation initiation factor 3 play important roles in cell development in humans and yeast. eIF3e and eIF3h have also been reported to be important for normal cell growth in Arabidopsis. However, the functions of subunit eIF3f remain largely unknown in plant species. Here we report characterization of mutants for the Arabidopsis eIF3f (AteIF3f) gene. AteIF3f encodes a protein that is highly expressed in pollen grains, developing embryos and root tips, and interacts with Arabidopsis eIF3e and eIF3h proteins. A Ds insertional mutation in AteIF3f disrupted pollen germination and embryo development. Expression of some of the genes that are essential for pollen tube growth and embryogenesis is down-regulated in ateif3f-1 homozygous seedlings obtained by pollen rescue. These results suggested that AteIF3f might play important roles in Arabidopsis cell growth and differentiation in combination with eIF3e and eIF3h.


Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease.

  • Wei Jing Liu‎ et al.
  • Cell death & disease‎
  • 2019‎

Autophagy, the intracellular lysosomal degradation process plays a pivotal role in podocyte homeostasis in diabetic kidney disease (DKD). Lysosomal function, autophagic activity, and their actions were investigated in vitro and in vivo. We found that LC3-II- and p62-positive vacuoles accumulated in podocytes of patients with DKD. Moreover, we found that advanced glycation end products (AGEs) could increase the protein expression of LC3-II and p62 in a dose- and time-dependent manner in cultured podocytes. However, the mRNA expression of LC3B, Beclin-1 or ATG7, as well as the protein level of Beclin-1 or ATG7 did not change significantly in the AGE-treated cells compared with that in control groups, suggesting that AGEs did not induce autophagy. In addition, AGEs led to an increase in the number of autophagosomes but not autolysosomes, accompanied with a failure in lysosomal turnover of LC3-II or p62, indicating that the degradation of autophagic vacuoles was blocked. Furthermore, we observed a dramatic decrease in the enzymatic activities, and the degradation of DQ-ovalbumin was significantly suppressed after podocytes were treated with AGEs. Plasma-irregular lysosomal-associated membrane protein 1 granules accompanied with the diffusion of cathepsin D expression and acridine orange redistribution were observed in AGE-treated podocytes, indicating that the lysosomal membrane permeability was triggered. Interestingly, we also found that AGEs-induced autophagic inhibition and podocyte injury were mimicked by the specific lysosomotropic agent, L-leucyl-L-leucine methyl ester. The exacerbated apoptosis and Rac-1-dependent actin-cytoskeletal disorganization were alleviated by an improvement in the lysosomal-dependent autophagic pathway by resveratrol plus vitamin E treatment in AGE-treated podocytes. However, the rescued effects were reversed by the addition of leupeptin, a lysosomal inhibitor. It suggests that restoring lysosomal function to activate autophagy may contribute to the development of new therapeutic strategies for DKD.


Upregulation of TRPC6 Mediated by PAX6 Hypomethylation Is Involved in the Mechanical Allodynia Induced by Chemotherapeutics in Dorsal Root Ganglion.

  • Xiang-Zhong Zhang‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2020‎

Although the action mechanism of antineoplastic agents is different, oxaliplatin, paclitaxel, or bortezomib as first-line antineoplastic drugs can induce painful neuropathy. In rodents, mechanical allodynia is a common phenotype of painful neuropathy for 3 chemotherapeutics. However, whether there is a common molecular involved in the different chemotherapeutics-induced painful peripheral neuropathy remains unclear.


IPAC integrates rewarding and environmental memory during the acquisition of morphine CPP.

  • Huan-Min Liu‎ et al.
  • Science advances‎
  • 2023‎

The association between rewarding and drug-related memory is a leading factor for the formation of addiction, yet the neural circuits underlying the association remain unclear. Here, we showed that the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) integrated rewarding and environmental memory information by two different receiving projections from ventral tegmental area (VTA) and nucleus accumbens shell region (NAcSh) to mediate the acquisition of morphine conditioned place preference (CPP). A projection from the VTA GABAergic neurons (VTAGABA) to the IPAC lateral region GABAergic neurons (IPACLGABA) mediated the effect of morphine rewarding, whereas the pathway from NAcSh dopamine receptor 1-expressing neurons (NAcShD1) to the IPAC medial region GABAergic neurons (IPACMGABA) was involved in the acquisition of environmental memory. These findings demonstrated that the distinct IPAC circuits VTAGABA→IPACLGABA and NAcShD1R→IPACMGABA were attributable to the rewarding and environmental memory during the acquisition of morphine CPP, respectively, and provided the circuit-based potential targets for preventing and treating opioid addiction.


Possible rodent equivalent of the posterior cingulate cortex (area 23) interconnects with multimodal cortical and subcortical regions.

  • Xiao-Jun Xiang‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

Posterior cingulate cortex (area 23, A23) in human and monkeys is a critical component of the default mode network and is involved in many diseases such as Alzheimer's disease, autism, depression, attention deficit hyperactivity disorder and schizophrenia. However, A23 has not yet identified in rodents, and this makes modeling related circuits and diseases in rodents very difficult. Using a comparative approach, molecular markers and unique connectional patterns this study has uncovered the location and extent of possible rodent equivalent (A23~) of the primate A23. A23 ~ but not adjoining areas in the rodents displays strong reciprocal connections with anteromedial thalamic nucleus. Rodent A23 ~ reciprocally connects with the medial pulvinar and claustrum as well as with anterior cingulate, granular retrosplenial, medial orbitofrontal, postrhinal, and visual and auditory association cortices. Rodent A23 ~ projects to dorsal striatum, ventral lateral geniculate nucleus, zona incerta, pretectal nucleus, superior colliculus, periaqueductal gray, and brainstem. All these findings support the versatility of A23 in the integration and modulation of multimodal sensory information underlying spatial processing, episodic memory, self-reflection, attention, value assessment and many adaptive behaviors. Additionally, this study also suggests that the rodents could be used to model monkey and human A23 in future structural, functional, pathological, and neuromodulation studies.


Epigenetic upregulation of hippocampal CXCL12 contributes to context spatial memory-associated morphine conditioning.

  • Guan-Xi Liu‎ et al.
  • Brain, behavior, and immunity‎
  • 2020‎

Conditioned place preference (CPP) is a learned behavior, in which animals learn to associate environmental contexts with rewarding effects. The formation of CPP is an integrated outcome of multiple learning processes. Although multiple anatomical substrates underlying this contextual learning have been proposed, it remains unknown whether a specific molecular signaling pathway within CA1 mediates context learning associated with morphine conditioning. Here, we showed that repeated context learning associated with morphine conditioning significantly increased CXCL12 levels in hippocampal CA1 neurons, and the inhibition of CXCL12 expression ameliorated the CPP behavior following context exposure with morphine conditioning. Additionally, repeated context exposure with morphine conditioning increased the phosphorylation of STAT3 and the acetylation of histone H4 in CXCL12-expressing neurons in CA1. Immunoprecipitation and chromatin immunoprecipitation assays demonstrated that repeated context exposure with morphine conditioning increased the binding of STAT3 to the CXCL12 gene promoter and the interaction between STAT3 and p300, which contributed to the enhanced transcription of CXCL12 by increasing the acetylation of histone H4 in the CXCL12 gene promoter. The inhibition of STAT3 by intrathecal injection of S3I-201 suppressed the acetylation of histone H4. These data demonstrated the epigenetic upregulation of CXCL12 following repeated context exposure with morphine conditioning, which potentially contributed to the spatial memory consolidation associated with conditioned place preference induced by morphine conditioning.


GLUT4 in Mouse Endometrial Epithelium: Roles in Embryonic Development and Implantation.

  • Yun Long‎ et al.
  • Frontiers in physiology‎
  • 2021‎

GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1-4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανβ3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.


The Mildew Resistance Locus O 4 Interacts with CaM/CML and Is Involved in Root Gravity Response.

  • Lei Zhu‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The plant-specific mildew resistance locus O (MLO) proteins, which contain seven transmembrane domains and a conserved calmodulin-binding domain, play important roles in many plant developmental processes. However, their mechanisms that regulate plant development remain unclear. Here, we report the functional characterization of the MLO4 protein in Arabidopsis roots. The MLO4 was identified as interacting with CML12 in a screening for the interaction between the proteins from Arabidopsis MLO and calmodulin/calmodulin-like (CaM/CML) families using yeast two hybrid (Y2H) assays. Then, the interaction between MLO4 and CML12 was further verified by Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation (BiFC) assays. Genetic analysis showed that the mlo4, cml12, and mlo4 cml12 mutants displayed similar defects in root gravity response. These results imply that the MLO4 might play an important role in root gravity response through interaction with CML12. Moreover, our results also demonstrated that the interaction between the MLO and CaM/CML families might be conservative.


Maternal Physiological Variations Induced by Chronic Gestational Hypoxia: 1H NMR-Based Metabolomics Study.

  • Jing-Xian Xie‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Metabolomics have been widely used in pregnancy-related diseases. However, physiological variations induced by chronic hypoxia during pregnancy are not well characterized. We aimed to investigate physiological variations induced by chronic hypoxia during pregnancy. A Sprague-Dawley (SD) pregnant rat model of chronic hypoxia was established. Plasma and urine metabolite profiles at different stages of the pregnancy were detected by 1H NMR (nuclear magnetic resonance). Multivariate statistical analysis was used to analyze changes in plasma and urine metabolic trajectories at different time-points. We identified hypoxia-induced changes in the levels of 30 metabolites in plasma and 29 metabolites in urine during different stages of pregnancy; the prominently affected metabolites included acetic acid, acetone, choline, citric acid, glutamine, isoleucine, lysine, and serine. Most significant hypoxia-induced changes in plasma and urine sample metabolites were observed on the 11th day of gestation. In summary, chronic hypoxia has a significant effect on pregnant rats, and may cause metabolic disorders involving glucose, lipids, amino acids, and tricarboxylic acid cycle. Metabolomics study of the effect of hypoxia during pregnancy may provide insights into the pathogenesis of obstetric disorders.


Blockade of mIL-6R alleviated lipopolysaccharide-induced systemic inflammatory response syndrome by suppressing NF-κB-mediated Ccl2 expression and inflammasome activation.

  • Ji-Min Dai‎ et al.
  • MedComm‎
  • 2022‎

Systemic inflammatory response syndrome (SIRS) is characterized by dysregulated cytokine release, immune responses and is associated with organ dysfunction. IL-6R blockade indicates promising therapeutic effects in cytokine release storm but still remains unknown in SIRS. To address the issue, we generated the human il-6r knock-in mice and a defined epitope murine anti-human membrane-bound IL-6R (mIL-6R) mAb named h-mIL-6R mAb. We found that the h-mIL-6R and the commercial IL-6R mAb Tocilizumab significantly improved the survival rate, reduced the levels of TNF-α, IL-6, IL-1β, IFN-γ, transaminases and blood urea nitrogen of LPS-induced SIRS mice. Besides, the h-mIL-6R mAb could also dramatically reduce the levels of inflammatory cytokines in LPS-treated THP-1 cells in vitro. RNA-seq analysis indicated that the h-mIL-6R mAb could regulate LPS-induced activation of NF-κB/Ccl2 and NOD-like receptor signaling pathways. Furthermore, we found that the h-mIL-6R mAb could forwardly inhibit Ccl2 expression and NLRP3-mediated pyroptosis by suppressing NF-κB in combination with the NF-κB inhibitor. Collectively, mIL-6R mAbs suppressed NF-κB/Ccl2 signaling and inflammasome activation. IL-6R mAbs are potential alternative therapeutics for suppressing excessive cytokine release, over-activated inflammatory responses and alleviating organ injuries in SIRS.


AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis.

  • Xiao-Ying Dou‎ et al.
  • Journal of integrative plant biology‎
  • 2016‎

In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen-rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18-GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18-homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.


Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats.

  • Yu-Ting Zhao‎ et al.
  • Journal of neuroinflammation‎
  • 2022‎

The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: