Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 190 papers

Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

  • Yuan Xu‎ et al.
  • Brain, behavior, and immunity‎
  • 2015‎

Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.


Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors.

  • Nannan Zhou‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson's correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.


In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

  • Xian Liu‎ et al.
  • Journal of cheminformatics‎
  • 2014‎

Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound.


Proteomic analysis of differentially expressed skin proteins in iRhom2(Uncv) mice.

  • Bing Liu‎ et al.
  • BMB reports‎
  • 2015‎

A mouse homozygous for the spontaneous mutation uncovered (Uncv) has a hairless phenotype. A 309-bp non-frameshift deletion mutation in the N-terminal cytoplasmic domain of iRhom2 was identified in Uncv mice (iRhom2(Uncv)) using target region sequencing. The detailed molecular basis for how the iRhom2 mutation causes the hairless phenotype observed in the homozygous iRhom2(Uncv) mouse remains unknown. To identify differentially expressed proteins in the skin of wild-type and homozygous iRhom2(Uncv) littermates at postnatal day 5, proteomic approaches, including two-dimensional gel electrophoresis and mass spectrometry were used. Twelve proteins were differentially expressed in the skin in a comparison between wild-type and homozygous iRhom2(Uncv) mice. A selection of the proteomic results were tested and verified using qRT-PCR, western blot and immunohistochemistry. These data indicate that differentially expressed proteins, especially KRT73, MEMO1 and Coro-1, might participate in the mechanism by which iRhom2 regulates the development of murine skin.


Value of Kidney Disease Improving Global Outcomes Urine Output Criteria in Critically Ill Patients: A Secondary Analysis of a Multicenter Prospective Cohort Study.

  • Jun-Ping Qin‎ et al.
  • Chinese medical journal‎
  • 2016‎

Urine output (UO) is an essential criterion of the Kidney Disease Improving Global Outcomes (KDIGO) definition and classification system for acute kidney injury (AKI), of which the diagnostic value has not been extensively studied. We aimed to determine whether AKI based on KDIGO UO criteria (KDIGOUO) could improve the diagnostic and prognostic accuracy, compared with KDIGO serum creatinine criteria (KDIGOSCr).


Potential harmful correlation between homocysteine and low-density lipoprotein cholesterol in patients with hypothyroidism.

  • Xuejie Dong‎ et al.
  • Medicine‎
  • 2016‎

Hypothyroidism (HO) can induce metabolic dysfunctions related to insulin resistance and dyslipidemia. Our previous studies showed that homocysteine (Hcy) impaired the coronary endothelial function and that Hcy can promote chemokine expression and insulin resistance (IR) by inducing endoplasmic reticulum stress in human adipose tissue and hypothyroid patients. The aim of this study was to investigate the potential harmful correlation between plasma Hcy and low-density lipoprotein cholesterol (LDL-C) in patients with HO.


EMT and stem cell-like properties associated with HIF-2α are involved in arsenite-induced transformation of human bronchial epithelial cells.

  • Yuan Xu‎ et al.
  • PloS one‎
  • 2012‎

Arsenic is well-established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is not been determined if the epithelial-mesenchymal transition (EMT) and stem cell-like properties contribute in causing to carcinogen-induced malignant transformation and subsequent tumor formation.


Role of irisin in Chinese patients with hypothyroidism: an interventional study.

  • Ning Yang‎ et al.
  • The Journal of international medical research‎
  • 2019‎

Irisin is a myokine that greatly affects energy expenditure and systemic metabolism. While thyroid hormone is likely associated with irisin, a direct relationship remains to be fully elucidated. This study aimed to investigate plasma irisin levels in Chinese patients with hypothyroidism.


Over-expression of PPAR-γ2 gene enhances the adipogenic differentiation of hemangioma-derived mesenchymal stem cells in vitro and in vivo.

  • Si-Ming Yuan‎ et al.
  • Oncotarget‎
  • 2017‎

Most of infantile hemangiomas involute into fibrofatty tissue in childhood, which indicates adipogenesis during this period. Mesenchymal stem cells (MSCs) contribute to the adipogenesis in IH. In this study, we investigated the effects of overexpression of PPAR-γ2 gene on the adipogenic differentiation of Hemangioma-derived MSCs (Hem-MSCs), and discussed the possibility of targeted therapy via PPAR-γ pathway.


High-magnitude compression accelerates the premature senescence of nucleus pulposus cells via the p38 MAPK-ROS pathway.

  • Pei Li‎ et al.
  • Arthritis research & therapy‎
  • 2017‎

Mechanical overloading can lead to disc degeneration. Nucleus pulposus (NP) cell senescence is aggravated within the degenerated disc. This study was designed to investigate the effects of high compression on NP cell senescence and the underlying molecular mechanism of this process.


The inflammatory cytokine TNF-α promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway.

  • Pei Li‎ et al.
  • Scientific reports‎
  • 2017‎

Premature senescence of nucleus pulposus (NP) cells and inflammation are two common features of degenerated discs. This study investigated the effects of the inflammatory cytokine TNF-α on the premature senescence of NP cells and the molecular mechanism behind this process. Rat NP cells were cultured with or without different concentrations of TNF-α for 1 and 3 days. The inhibitor LY294002 was used to determine the role of the PI3K/Akt pathway. NP cells that were incubated with TNF-α for 3 days followed by 3 days of recovery in the control medium were used to analyze cellular senescence. Results showed that TNF-α promoted premature senescence of NP cells, as indicated by decreased cell proliferation, decreased telomerase activity, increased SA-β-gal staining, the fraction of cells arrested in the G1 phase of the cell cycle, the attenuated ability to synthesize matrix proteins and the up-regulated expression of the senescence marker p16 and p53. Moreover, a high TNF-α concentration produced greater effects than a low TNF-α concentration on day 3 of the experiment. Further analysis indicated that the inhibition of the PI3K/Akt pathway attenuated the TNF-α-induced premature senescence of NP cells. Additionally, TNF-α-induced NP cell senescence did not recover after TNF-α was withdrawn. In conclusion, TNF-α promotes the premature senescence of NP cells, and activation of the PI3K/Akt pathway is involved in this process.


Role of p38-MAPK pathway in the effects of high-magnitude compression on nucleus pulposus cell senescence in a disc perfusion culture.

  • Lianglong Pang‎ et al.
  • Bioscience reports‎
  • 2017‎

Nucleus pulposus (NP) cell senescence is a typical pathological feature within the degenerative intervertebral disc. As a potential inducing and aggregating factor of disc degeneration, mechanical overloading affects disc biology in multiple ways. The present study was to investigate the NP cell senescence-associated phenotype under intermittent high compression in an ex vivo disc bioreactor culture, and the role of the p38-MAPK pathway in this regulatory process. Porcine discs were cultured in culture chambers of a self-developed mechanically active bioreactor and subjected to different magnitudes of dynamic compression (low-magnitude and high-magnitude: 0.1 and 1.3 MPa at a frequency of 1.0 Hz for 2 h per day respectively) for 7 days. Non-compressed discs were used as controls. The inhibitor SB203580 was used to study the role of the p38-MAPK pathway in this process. Results showed that intermittent high-magnitude compression clearly induced senescence-associated changes in NP cells, such as increasing β-galactosidase-positive NP cells, decreasing PCNA-positive NP cells, promoting the formation of senescence-associated heterochromatic foci (SAHF), up-regulating the expression of senescence markers (p16 and p53), and attenuating matrix production. However, inhibition of the p38-MAPK pathway partly attenuated the effects of intermittent high-magnitude (1.3 MPa) compression on those described NP cell senescence-associated parameters. In conclusion, intermittent high-magnitude compression can induce NP cell senescence-associated changes in an ex vivo disc bioreactor culture, and the p38-MAPK pathway is involved in this process.


Significant association of the EXO1 rs851797 polymorphism with clinical outcome of ovarian cancer.

  • Tingyan Shi‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Exonuclease 1 (EXO1), one of DNA mismatch repair pathway genes, functions in maintaining genomic stability and affects tumor progression. We hypothesized that genetic variations in EXO1 may predict clinical outcomes in epithelial ovarian cancer (EOC).


Cerebrolysin Ameliorates Focal Cerebral Ischemia Injury Through Neuroinflammatory Inhibition via CREB/PGC-1α Pathway.

  • Xin Guan‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Neuroinflammation is one of the important factors aggravating brain injury after ischemic stroke. We aimed to investigate the effects of cerebrolysin (CBL) on neuroinflammation in vivo and in vitro and the underlying mechanisms. The gene expressions of pro-inflammatory factors and anti-inflammatory factors were analyzed by real time PCR in rat transient middle cerebral artery occlusion (tMCAO) model, lipopolysaccharides-induced neuroinflammatory mice model and LPS-treated mouse primary microglia cells. The neuroprotective effects of CBL were evaluated by infarct size, Longa test and Rotarod test for long-term functional recovery in rats subjected to ischemia. The role of CREB/PGC-1α pathway in anti-neuroinflammatory effect of CBL was also determined by real time PCR and Western blotting. In the tMCAO model, administration of CBL at 3 h post-ischemia reduced infarct volume, promoted long-term functional recovery, decreased the gene expression of pro-inflammatory factors and increased the gene expression of anti-inflammatory factors. Correspondingly, in LPS-induced neuroinflammatory mice model, CBL treatment attenuated sickness behavior, decreased the gene expression of pro-inflammatory factors, and increased the gene expression of anti-inflammatory factors. In in vitro and in vivo experiments, CBL increased the protein expression levels of PGC-1α and phosphorylated CREB to play anti-inflammatory effect. Additionally, the application of the specific CREB inhibitor, 666-15 compound could effectively reverse the anti-inflammatory effect of CBL in primary mouse microglia cells and anti-ischemic brain injury of CBL in rats subjected to tMCAO. In conclusion, CBL ameliorated cerebral ischemia injury through reducing neuroinflammation partly via the activation of CREB/PGC-1α pathway and may play a therapeutic role as anti-neuroinflammatory agents in the brain disorders associated with neuroinflammation.


Development of early warning and rapid response system for patients with novel coronavirus pneumonia (COVID-19): A research protocol.

  • Hua Zhou‎ et al.
  • Medicine‎
  • 2020‎

Coronavirus disease 2019 (COVID-19) has caused serious damage to public health. COVID-19 has no vaccine or specific therapy; its mortality rate increases significantly once patients deteriorate. Furthermore, intensive monitoring of COVID-19 is limited by insufficient medical resources and increased risks of exposure to medical staff. We therefore aim to build an early warning and rapid response system (EWRRS) to address these problems.


Ratio of positive lymph nodes: The prognostic value in stage IV thyroid cancer.

  • Tingyin Jiang‎ et al.
  • Oncotarget‎
  • 2017‎

To assess the prognostic value of lymph node ratio (LNR) in patients with stage IV thyroid cancer based on the Surveillance, Epidemiology, and End Results (SEER) database. A total of 4,940 eligible patients were included for the analysis. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to reveal the effect of LNR on overall survival (OS) and disease specific survival (DSS). The optimal cut-off value of LNR for predicting OS and DSS was determined by the time-dependent Receiver Operating Characteristic analysis. By the univariate Cox proportional hazard regression, LNR was significantly associated with OS and DSS in patients with medullary thyroid cancer (MTC), papillary thyroid cancer and anaplastic thyroid cancer (all P < 0.05). With the optimal cut-off value, Kaplan-Meier analysis showed that MTC patients with LNR≥76.5% were significantly associated with poorer OS (log-rank test: P < 0.0001), and LNR≥40.7% were significantly associated with poorer DSS (log-rank test: P < 0.0001). LNR was an independent prognostic factor of poorer survival in MTC patients after adjusting for other variables by multivariable Cox analysis (OS: hazard ratio [HR] = 2.560, 95% confidence interval [CI] 1.690-3.879, P < 0.0001; DSS: HR=2.781, 95% CI 1.582-4.888, P = 0.0004). Our results demonstrated that LNR could predict clinical outcomes in patients with stage IV MTC, and 76.5% was the optimal cut-off value of LNR to predict OS. LNR, as a function of the nodes positive and the nodes examined, could provide suggestions on the postoperative prognosis of patients with stage IV MTC.


Mutational landscape and genetic signatures of cell-free DNA in tumour-induced osteomalacia.

  • Nan Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Tumour-induced osteomalacia (TIO) is a very rare paraneoplastic syndrome with bone pain, fractures and muscle weakness, which is mostly caused by phosphaturic mesenchymal tumours (PMTs). Cell-free DNA (cfDNA) has been regarded as a non-invasive liquid biopsy for many malignant tumours. However, it has not been studied in benign tumours, which prompted us to adopt the targeted next-generation sequencing approach to compare cfDNAs of 4 TIO patients, four patients with bone metastasis (BM) and 10 healthy controls. The mutational landscapes of cfDNA in TIO and BM groups were similar in the spectrum of allele frequencies and mutation types. Markedly, deleterious missense mutations in FGFR1 and loss-of-function mutations in MED12 were found in 3/4 TIO patients but none of BM patients. The gene ontology analysis strongly supported that these mutated genes found in TIOs would play a potential role in PMTs' process. The genetic signatures and corresponding change in expression of FGFR1 and FGF23 were further validated in PMT tissues from a test cohort of another three TIO patients. In summary, we reported the first study of the mutational landscape and genetic signatures of cfDNA in TIO/PMTs.


Variants in Notch signalling pathway genes, PSEN1 and MAML2, predict overall survival in Chinese patients with epithelial ovarian cancer.

  • Yuan Xu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

To identify genetic variants in Notch signalling pathway genes that may predict survival of Han Chinese patients with epithelial ovarian cancer (EOC), we analysed a total of 1273 single nucleotide polymorphisms (SNPs) within 75 Notch genes in 480 patients from a published EOC genomewide association study (GWAS). We found that PSEN1 rs165934 and MAML2 rs76032516 were associated with overall survival (OS) of patients by multivariate Cox proportional hazards regression analysis. Specifically, the PSEN1 rs165934 AA genotype was associated with a poorer survival (adjusted hazards ratio [adjHR] = 1.41, 95% CI = 1.07-1.84, and P = .014), compared with the CC + CA genotype, while MAML2 rs76032516 AA + AC genotypes were associated with a poorer survival (adjHR = 1.58, 95% CI = 1.16-2.14, P = .004), compared with the CC genotype. The combined analysis of these two SNPs revealed that the death risk increased as the number of unfavourable genotypes increased in a dose-dependent manner (Ptrend < .001). Additionally, the expression quantitative trait loci analysis revealed that the SNP rs165932 in the rs165934 LD block (r2 = .946) was associated with expression levels of PSEN1, which might be responsible for the observed association with SNP rs165934. The associations of PSEN1 rs165934 and MAML2 rs76032516 of the Notch signalling pathway genes with OS in Chinese EOC patients are novel findings, which need to be validated in other large and independent studies.


Total Flavonoids of Rhizoma Drynariae Restore the MMP/TIMP Balance in Models of Osteoarthritis by Inhibiting the Activation of the NF-κB and PI3K/AKT Pathways.

  • Guang-Yao Chen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Total flavonoids of Rhizoma Drynariae (TFRD) have been shown to have beneficial effects on osteoarthritis (OA) clinically, but the mechanisms have not been elucidated. In this study, we investigated the effect of TFRD on articular cartilage in an OA rat model established by the Hulth method and in SW1353 chondrocytes induced by the proinflammatory factor interleukin-1β (IL-1β). The results showed that TFRD could alleviate the pathological changes in knee cartilage in OA model rats. In vivo, the qPCR analysis indicated that the mRNA levels of matrix metalloproteinases, MMP-1, MMP-3, and MMP-13, were decreased, while tissue inhibitor of matrix metalloproteinases- (TIMP-) 4 was increased in cartilage, and these changes could be partially prevented by TFRD. In vitro experiments showed that IL-1β could significantly increase the expression of MMP-1, MMP-3, and MMP-13 and decrease the expression of TIMP-4 in SW1353 cells at the mRNA and protein levels. TFRD could increase the expression of MMP-3 and MMP-13 and decrease the expression of TIMP-4. Transfection of siRNA and addition of pathway inhibitors were used to clarify that inhibition of NF-κB and PI3K/AKT pathway decreased MMP-1, MMP-3, and MMP-13 and increased TIMP-4 expression. We also found that in IL-1β-induced SW1353 cells, TFRD pretreatment had a modest inhibitory effect on p-AKT (Ser473) and reversed the increase of nuclear factor kappa-B (NF-κB) p65 in nuclear fraction and the decrease of inhibitor of NF-κB(IκB)-α in the cytosolic fraction. Further immunofluorescence confirmed that TFRD can inhibit IL-1β-induced NF-κB p65 translocation to the nucleus to some extent. In conclusion, TFRD showed chondroprotective effects by restoring the MMP/TIMP balance in OA models by suppressing the activation of the NF-κB and PI3K/AKT pathways.


Ligustilide Prevents Radiation Enteritis by Targeting Gch1/BH4/eNOS to Improve Intestinal Ischemia.

  • Tao Yan‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

There is a high incidence of radiation enteritis (RE) after abdominal radiotherapy. The occurrence of RE seriously affects the treatment and quality of life of patients; however, its pathogenesis is complex and there are no effective drugs for its prevention or treatment. Intestinal ischemia plays an important role in the occurrence of enteritis. Previous studies have shown that targeting GTP-cyclohydrolase 1 (Gch1) to improve intestinal ischemia could be a new strategy to prevent and treat RE. A high content of the naturally occurring phthalide derivative ligustilide (LIG) has been found in the plant drug Rhizoma Ligustici Chuanxiong for the treatment of cardiovascular diseases. The purpose of this study was to evaluate the protective effects of LIG on RE. Ionizing radiation (IR) rat and endothelial cell models were used to observe and record rat body weights and stool morphologies, measure intestinal blood perfusion by laser Doppler blood flow imaging, determine the diastolic functions of mesenteric arteries, detect the levels of Gch1/BH4/eNOS pathway-related proteins and regulatory molecules in the mesenteric arteries and endothelial cells, and predict affinity by molecular docking technology. The results showed that LIG significantly improved the body weights, loose stools, intestinal villi lengths, intestinal perfusion and vasodilatory functions of IR rats. LIG also significantly improved Gch1 protein and BH4 levels in the mesenteric arteries and endothelial cells after IR, increased the NO content, reduced superoxide accumulation, and improved p-eNOS (Ser1177) levels in endothelial cells. LIG has good affinity for Gch1, which significantly improves its activity. These results indicate that LIG is the preferred compound for the prevention and treatment of RE by improving intestinal ischemia through the Gch1/BH4/eNOS pathway. This study provides a theoretical basis and new research ideas for the development of new drugs for RE.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: