Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma.

  • Jia Guo‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

Elucidation of the downstream targets regulated by the metastasis-suppressive miRNAs can shed light on the metastatic processes in prostate cancer (PCa). We conducted microarray analyses and found that miR-195 was significantly decreased in metastatic PCa. Low miR-195 expression is an independent prognostic factor for poor biochemical recurrence-free and overall survival. Forced expression of miR-195 in PCa cells drastically inhibits proliferation, migration and invasion in vitro and inhibits tumor growth and metastasis in vivo. BCOX1 is identified as a direct target of miR-195 in PCa, and is found to be drastically increased in metastatic PCa. BCOX1 knockdown phenotypically copies miR-195-induced phenotypes, whereas forced expression of BCOX1 reverses the effects of miR-195. Collectively, this is the first report unveils that loss of miR-195 expression and thus uncontrolled BCOX1 upregulation might drive PCa metastasis.


Effect of picroside II on apoptosis induced by renal ischemia/reperfusion injury in rats.

  • Lei Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

Renal ischemia and reperfusion (I/R) injury, which commonly occurs in kidney transplantation, is the leading cause of acute kidney injury. Picroside II possesses a wide range of pharmacological effects, including anti-apoptosis effects. In the present study, the ability of picroside II to attenuate apoptosis in a rat model of renal I/R injury was investigated. Sprague-Dawley rats were subjected to 45 min of ischemia followed by 24 h of reperfusion. Prior to reperfusion, the rats were treated with picroside II or an equal volume of phosphate-buffered saline. It was observed that renal function was significantly improved by the treatment with picroside II. Morphological analysis indicated that picroside II markedly reduced tissue damage and the expression of cleaved caspase-3. Reverse transcription-quantitative polymerase chain reaction and western blotting revealed that the expression levels of Bax and poly(ADP-ribose) polymerase-1 (PARP-1) were upregulated in the I/R group, whereas those of Bcl-2 were downregulated. However, the treatment with picroside II inhibited these changes induced by renal I/R injury. In conclusion, picroside II has potent anti-apoptotic activity against renal I/R injury.


Ischemic postconditioning inhibits apoptosis in an in vitro proximal tubular cell model.

  • Xiaodong Weng‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Ischemia-reperfusion is a common injury of clinical ischemic disease and surgical lesions. Ischemic postconditioning (IPO) improves the ability of organs subjected to ischemia to tolerate injury. However, renal IPO studies have been based on animal models. In order to gain insights into IPO-induced alterations at the cellular level, an in vitro model for IPO was designed using the rat proximal tubular cell line NRK-52 E. This model was established by placing NRK-52 E cells in ischemic conditions for 3 h, then exposing cells to three cycles of reperfusion for 10 min and finally to ischemic conditions for 10 min (postconditioning). The cells were cultured further in reperfusion conditions for 3, 6, 12 and 24 h. Flow cytometry and Hoechst were used to assess apoptosis. The protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, cleaved caspase-3 and caspase-8 were analyzed by western blotting. The results demonstrated that apoptosis occurred in cells subjected to ischemia/reperfusion (I/R) alone or with postconditioning following reperfusion for 24 h. Cells subjected to I/R demonstrated increased expression of Bax, cleaved caspase-3 and caspase-8 at the end of reperfusion. However, the levels of Bax, cleaved caspase-3 and caspase-8 were significantly attenuated in cells, which had undergone IPO. In conclusion, apoptosis was observed in cells subjected to 3 h of ischemia-reperfusion injury and IPO was able to inhibit this apoptosis. IPO inhibited apoptosis by inhibiting the caspase pathway thereby exerting protective effects.


Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway.

  • Lei Wang‎ et al.
  • Drug design, development and therapy‎
  • 2018‎

Ozone has been used as a curative agent for a variety of different diseases for over 150 years. In our previous study, we found that ozone oxidative preconditioning could alleviate renal damage induced by ischemia and reperfusion injury (I/R). Although this method had obvious protective effects in the reduction of I/R, its clinical application remains limited because this treatment must be commenced prior to the ischemic period, which is not practical in the clinic.


Inhibition of the SIRT1 signaling pathway exacerbates endoplasmic reticulum stress induced by renal ischemia/reperfusion injury in type 1 diabetic rats.

  • Jianjian Zhang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The aim of the present study was to investigate whether the diabetic kidney is more susceptible to ischemia/reperfusion (I/R) injury, and identify the potential mechanisms involved. An animal model of type 1 diabetes was created by treating rats with streptozotocin (STZ). This model was then used, along with healthy controls, to investigate the effect of diabetes mellitus (DM) on renal I/R injury. After 45 min of ischemia and 24 h of reperfusion, kidney and serum samples were acquired and used to evaluate function and histopathological injury in the kidneys. Western blotting was also used to determine the expression levels of key proteins. Rats experiencing renal I/R exhibited significant characteristics of renal dysfunction, reduced levels of Sirtuin 1 (SIRT1) protein (a key signaling protein in the kidneys), increased endoplasmic reticulum stress (ERS) and pyroptosis. Furthermore, diabetic rats exhibited further reductions in the levels of SIRT1 in response to renal I/R injury and an increase in the levels of ERS. These effects were all alleviated by the administration of a SIRT1 agonist. The present analysis revealed that the SIRT1‑mediated activation of ER stress and pyroptosis played a pivotal role in diabetic rats subjected to renal I/R injury. Downregulation of the SIRT1 signaling pathway were exacerbated in response to renal I/R injury‑induced acute kidney injury (AKI). The present data indicated that DM enhanced ER stress and increased pyroptosis by downregulating the SIRT1 signaling pathway.


Metformin suppressed tumor necrosis factor-α-induced epithelial-mesenchymal transition in prostate cancer by inactivating the NF-κB signaling pathway.

  • Min Wang‎ et al.
  • Translational cancer research‎
  • 2020‎

Epithelial-mesenchymal transition (EMT) and the tumor micro- environment are involved in tumorigenesis and progression. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine in cancer that might be associated with promoting cancer invasion and metastasis. This study aimed to explore the potential effects of metformin on TNF-α-induced EMT in prostate cancer.


Lysine-specific demethylase 1 aggravated oxidative stress and ferroptosis induced by renal ischemia and reperfusion injury through activation of TLR4/NOX4 pathway in mice.

  • Ruikang Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Acute kidney injury (AKI) is mainly caused by renal ischaemia reperfusion injury (IRI). Lots of evidence suggests that ferroptosis and oxidative stress play the vital role in renal IRI. However, the specific mechanism of renal IRI has not been fully elucidated. lysine-specific demethylase 1 (LSD1) has been shown to regulate the pathogenesis of kidney disease. In this study, we firstly found that LSD1 was positively related to renal IRI. TCP, a classical LSD1 inhibitor, could alleviate tissue damage induced by renal IRI. Inhibition of LSD1 with either TCP or LSD1 knockdown could alleviate ferroptosis and oxidative stress caused by IRI both in vivo and in vitro. Furthermore, the results showed that suppression of LSD1 decreased the expression of TLR4/NOX4 pathway in HK-2 cells subjected to H/R. With the si-RNA against TLR4 or NOX4, it showed that the silence of TLR4/NOX4 reduced oxidative stress and ferroptosis in vitro. Moreover, to demonstrate the crucial role of TLR4/NOX4, TLR4 reduction, mediated by inhibition of LSD1, was compensated through delivering the adenovirus carrying TLR4 in vitro. The results showed that the compensation of TLR4 blunted the alleviation of oxidative stress and ferroptosis, induced by LSD1 inhibition. Further study showed that LSD1 activates TLR4/NOX4 pathway by reducing the enrichment of H3K9me2 in the TLR4 promoter region. In conclusion, our results demonstrated that LSD1 inhibition blocked ferroptosis and oxidative stress caused by renal IRI through the TLR4/NOX4 pathway, indicating that LSD1 could be a potential therapeutic target for renal IRI.


Picroside II attenuates ischemia/reperfusion testicular injury by alleviating oxidative stress and apoptosis through reducing nitric oxide synthesis.

  • Yanze Li‎ et al.
  • Acta cirurgica brasileira‎
  • 2019‎

To investigate the effect of Picroside II on testicular ischemia and reperfusion (l/R) injury and the underlying mechanism.


Adipose-Derived Stem Cells Inhibited the Proliferation of Bladder Tumor Cells by S Phase Arrest and Wnt/β-Catenin Pathway.

  • Tao Wang‎ et al.
  • Cellular reprogramming‎
  • 2019‎

Adipose-derived stem cells (ADSCs), which are present in most organs and tissues, were evaluated as a novel medium for stem cell therapy. In this study, we investigated the effects and underlying mechanisms of ADSCs in bladder tumor (BT) cells. SV-HUC, T24, and EJ cells were cultured with ADSCs and conditioned medium from ADSCs (ADSC-CM). We observed that in routine culture, ADSCs significantly inhibited the proliferation of T24 and EJ cells in a dose-dependent manner. In addition, ADSC-CM attenuated the viability of T24 and EJ cells in a dose-dependent manner. Cell cycle analysis indicated that ADSC-CM was capable of inducing T24 and EJ cells S phase arrest and downregulating the expression of CDK 1, whereas the expression of cyclin A was increased. ADSC-CM could induce apoptosis in T24 cells. The mechanism of this effect likely involved the caspase3/7 pathway and Wnt/β-catenin pathway. These findings demonstrated that ADSCs could inhibit the proliferation of BT cells via secretory factors.


The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation.

  • Yan Yuan‎ et al.
  • Journal of Cancer‎
  • 2020‎

N6-methyladenosine (m6A) is the richest modification in mammalian messenger RNAs (mRNAs), and exerts key roles in many biological processes, including cancer development, whereas its roles in prostate carcinoma (PCa) remain to be unclear. Here, we found that m6A modifications are increased in PCa and methyltransferase-like 3 (METTL3), but not other major m6A modification genes including METTL14, fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5), was the major dysregulated gene associated with abnormal m6A modification. In addition, METTL3 up-regulation acted as a poor prognostic factor for overall survival and disease-free survival in PCa patients. Knockdown of METTL3 significantly inhibited PCa cells proliferation, migration, and invasion. In addition, over-expression of METTL3, but not its catalytic mutant form, significantly promoted PCa cells growth and progression. Mechanistically, we revealed that METTL3 enhanced MYC(c-myc) expression by increasing m6A levels of MYC mRNA transcript, leading to oncogenic functions in PCa. Importantly, PCa cells growth and progression inhibition by METTL3 knockdown were restored through over-expression of MYC. Our results uncovered a METTL3/m6A/MYC axis and provided insight into the mechanisms of PCa progression.


Upregulation of Metallothionein 1 G (MT1G) Negatively Regulates Ferroptosis in Clear Cell Renal Cell Carcinoma by Reducing Glutathione Consumption.

  • Wu Zhang‎ et al.
  • Journal of oncology‎
  • 2022‎

Ferroptosis is characterized by lipid peroxidation and iron accumulation, closely associated with clear cell renal cell carcinoma (ccRCC). It is of great significance for prognostic prediction and treatment of ccRCC to find biomarkers related to ferroptosis. We conducted several bioinformatic analyses using the transcriptome data and clinical information derived from online databases. Firstly, we identified the differentially expressed target genes in ccRCC. Then, t test and COX analysis were used to determine whether it was an independent prognostic factor combined with clinical information. String and gene set enrichment analysis (GSEA) were used to predict its function. Finally, we used ccRCC cells: 769-P and KAKI-1 in vitro to verify the regulation of target genes on cell proliferation apoptosis, iron metabolism, and GSH metabolism, which were used to judge the effect of target genes on ferroptosis. The study showed that MT1G is downregulated in ccRCC tissues compared with normal renal tissues. However, the ccRCC patients with higher expression relatively had higher malignancy and advanced stages. MT1G is an independent adverse factor for the prognosis of ccRCC. The protein interaction network analysis and GSEA showed that MT1G was closely related to GSH metabolism-related proteins (GSR) and lipid oxidation-related proteins (PLA2G2A). Samples with high expression of MT1G were enriched in "glutathione metabolism," "oxidative phosphorylation," and "proteasome," whose function was involved in GSH metabolism and lipid peroxidation. The term associated with the occurrence and development of tumors included "P53 signaling pathway." Furthermore, in vitro experiments showed that MT1G partially blocked ferroptosis induced by erastin and sorafenib-induced ccRCC cell lines (769-P and CAKI-1). The mechanism may be that MT1G affects ferroptosis by regulating GSH consumption in ccRCC cells. MT1G may be a negative regulator of ferroptosis in ccRCC cells and a biomarker of poor prognosis.


PCMT1 regulates the migration, invasion, and apoptosis of prostate cancer through modulating the PI3K/AKT/GSK-3β pathway.

  • Jiacheng Zhong‎ et al.
  • Aging‎
  • 2023‎

Protein L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) is a repair enzyme that catalyzes the conversion of isomerized aspartic acid (iso-Asp) residues into their normal structure, thereby restoring the configuration and function of proteins. Studies have shown that PCMT1 is overexpressed in several tumors and affects patients' prognosis. However, there are few reports on the role of PCMT1 in prostate cancer (PCa). In the present research, with the assistance of The Cancer Genome Atlas Program (TCGA) database, we found that PCMT1 was overexpressed in PCa tissues. The results of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry staining also showed that PCMT1 expression was significantly increased in PCa tissues and cell lines. In PCa clinical samples, PCMT1 expression was closely related to Gleason score, clinical stage, lymph node metastasis and bone metastasis. The experiments of overexpression and knockdown of PCMT1 in vitro or in vivo showed that PCMT1 can significantly promote the proliferation, migration and invasion of PCa cells, inhibit cell apoptosis, and promote the growth of PCa. We furthermore confirmed that PCMT1 regulated the migration, invasion and apoptosis of PCa cells by modulating the phosphatidylinositol 3-kinase/AKT kinase/glycogen-synthase kinase-3β (PI3K/AKT/GSK-3β) signaling pathway. Collectively, PCMT1 plays a cancer-facilitative role in PCa by promoting the proliferation, migration and invasion of PCa cells, and inhibiting apoptosis. Therefore, PCMT1 is considered to represent a novel target for treating PCa.


Cyanidin-3-O-glucoside plays a protective role against renal ischemia/ reperfusion injury via the JAK/STAT pathway.

  • Yufeng Xiong‎ et al.
  • Acta cirurgica brasileira‎
  • 2023‎

To investigate the role of cyanidin-3-O-glucoside (C3G) in renal ischemia/reperfusion (I/R) injury and the potential mechanisms.


The E3 ubiquitin ligase TRIM39 modulates renal fibrosis induced by unilateral ureteral obstruction through regulating proteasomal degradation of PRDX3.

  • Jun Jian‎ et al.
  • Cell death discovery‎
  • 2024‎

Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.


Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress.

  • Hao Liu‎ et al.
  • Redox biology‎
  • 2019‎

Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role in renal I/R injury in mice. Inhibiting Brd4 with either JQ1 or genetic knockdown resulted in reduction of endoplasmic reticulum stress (ERS)-associated protein and proapoptotic protein expression both in I/R-induced injury and hypoxia/reoxygenation (H/R) stimulation in HK-2 cells. H/R-induced apoptosis and ERS depended on oxidative stress in vitro. Moreover, FoxO4, which is involved in the generation of hydrogen peroxide, was up-regulated during H/R stimulation-mediated apoptosis and ERS, and this upregulation could be abolished by Brd4 inhibition. Consistently, FoxO4-mediated ROS generation was attenuated upon inhibition of Brd4 with JQ1 or siRNA against Brd4. Further, the transcriptional activity of FoxO4 was suppressed by PI3K and AKT phosphorylation, which are upstream signals of FoxO4 expression, and were enhanced by Brd4 both in vivo and in vitro. In conclusion, our results proved that Brd4 inhibition blocked renal apoptotic and ERS protein expression by preventing FoxO4-dependent ROS generation through the PI3K/AKT pathway, indicating that Brd4 could be a potential therapeutic target for renal I/R injury.


Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB.

  • Gang Yu‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2016‎

This study aims to determine the effects of ozone therapy on restoring impaired Nrf2 activation to ameliorate chronic tubulointerstitial injury in rats with adenine-induced CKD.


Inhibition of Disruptor of Telomeric Silencing 1-Like Alleviated Renal Ischemia and Reperfusion Injury-Induced Fibrosis by Blocking PI3K/AKT-Mediated Oxidative Stress.

  • Chuan Yang‎ et al.
  • Drug design, development and therapy‎
  • 2019‎

Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury, usually occurs during renal surgeries, and may eventually lead to chronic kidney diseases. However, effective therapeutic targets for renal I/R injury remain limited.


RCAN1.4 attenuates renal fibrosis through inhibiting calcineurin-mediated nuclear translocation of NFAT2.

  • Jianjian Zhang‎ et al.
  • Cell death discovery‎
  • 2021‎

Chronic kidney disease (CKD) is thus deemed to a global health problem. Renal fibrosis, characterized by accumulation of extracellular matrix (ECM) components in the kidney, is considered a common pathway leading to CKD. Regulator of calcineurin1 (RCAN1), identified as a competitive endogenous inhibitor of the phosphatase calcineurin, participates in ECM deposition in various organs. However, the role of RCAN1 in renal fibrosis remains unclear. Here, unilateral ureteral obstruction (UUO), a well-known model to induce renal fibrosis in vivo, was performed on mice for a week. To overexpress RCAN1.4 in vivo, recombinant adeno-associated virus 9-packed RCAN1.4 over-expression plasm was employed in mice kidney. Lentivirus-packed RCAN1.4 over-expression plasm was employed to transfer into HK-2 and NRK-49F cells in vitro. The results indicated that RCAN1.4 expression was impaired both in UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibrosis in vitro. However, knocking in of RCAN1.4 suppressed the production of extracellular matrix (ECM) both in vivo and in vitro. Furthermore, in vitro, the apoptosis-related proteins, including the ratio of Bax/Bcl-2 and cleaved-caspase3, were elevated in cells transfected with RCAN1.4 overexpression plasmid. In addition, we found that RCAN1.4 could rugulated NFAT2 nuclear distribution by inhibiting calcineurin pathway. So overexpression of RCAN1.4 could reverse renal fibrosis, attenuate ECM related protein accumulation, promote apoptosis of myofibroblast via inhibiting Calcineurin/NFAT2 signaling pathway. Taken together, our study demonstrated that targeting RCAN1.4 may be therapeutic efficacy in renal fibrosis.


DOT1L Epigenetically Regulates Autophagy and Mitochondria Fusion in Cell Lines of Renal Cancer.

  • Yanguang Hou‎ et al.
  • Technology in cancer research & treatment‎
  • 2023‎

DOT1L, a histone methylase, is overexpression in renal cell cancer. However, the role and detailed molecular mechanism of DOT1L involved in renal cancer development remain unknown.


Construction of cancer- associated fibroblasts related risk signature based on single-cell RNA-seq and bulk RNA-seq data in bladder urothelial carcinoma.

  • Yunxun Liu‎ et al.
  • Frontiers in oncology‎
  • 2023‎

The ability of cancer-associated fibroblasts (CAFs) to encourage angiogenesis, tumor cell spread, and increase treatment resistance makes them pro-tumorigenic. We aimed to investigate the CAF signature in Bladder urothelial carcinoma (BLCA) and, for clinical application, to build a CAF-based risk signature to decipher the immune landscape and screen for suitable treatment BLCA samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: