Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 379 papers

Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae).

  • Zhigang Wu‎ et al.
  • Ecology and evolution‎
  • 2016‎

The effects of geographic and environmental variables on the pattern of genetic differentiation have been thoroughly studied, whereas empirical studies on aquatic plants are rare. We examined the spatial genetic differentiation of 58 Myriophyllum spicatum populations distributed throughout China with 12 microsatellite loci, and we analyzed its association with geographic distance, geographic barriers, and environmental dissimilarity using causal modeling and multiple matrix regression with randomization (MMRR) analysis. Two genetic clusters were identified, and their geographic distribution suggested mountain ranges as a barrier to gene flow. The causal modeling revealed that both climate and geographic barriers significantly influenced genetic divergence among M. spicatum populations and that climate had the highest regression coefficient according to the MMRR analysis. This study showed that geography and environment together played roles in shaping the genetic structure of M. spicatum and that the influence of environment was greater. Our findings emphasized the potential importance of the environment in producing population genetic differentiation in aquatic plants at a large geographic scale.


RED: A Java-MySQL Software for Identifying and Visualizing RNA Editing Sites Using Rule-Based and Statistical Filters.

  • Yongmei Sun‎ et al.
  • PloS one‎
  • 2016‎

RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. Although several methods have been suggested to identify RNA editing sites, there remains challenges to be addressed in distinguishing true RNA editing sites from its counterparts on genome and technical artifacts. In addition, there lacks a software framework to identify and visualize potential RNA editing sites. Here, we presented a software - 'RED' (RNA Editing sites Detector) - for the identification of RNA editing sites by integrating multiple rule-based and statistical filters. The potential RNA editing sites can be visualized at the genome and the site levels by graphical user interface (GUI). To improve performance, we used MySQL database management system (DBMS) for high-throughput data storage and query. We demonstrated the validity and utility of RED by identifying the presence and absence of C→U RNA-editing sites experimentally validated, in comparison with REDItools, a command line tool to perform high-throughput investigation of RNA editing. In an analysis of a sample data-set with 28 experimentally validated C→U RNA editing sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a better sensitivity (0.75) but similar specificity (0.5). RED is an easy-to-use, platform-independent Java-based software, and can be applied to RNA-seq data without or with DNA sequencing data. The package is freely available under the GPLv3 license at http://github.com/REDetector/RED or https://sourceforge.net/projects/redetector.


Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding.

  • Xing Li‎ et al.
  • Cell death & disease‎
  • 2016‎

Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R.


Necrostatin-1 enhances the resolution of inflammation by specifically inducing neutrophil apoptosis.

  • Hongyu Jie‎ et al.
  • Oncotarget‎
  • 2016‎

Neutrophils play a central role in innate immunity and are rapidly recruited to sites of infection and injury. Neutrophil apoptosis is essential for the successful resolution of inflammation. Necrostatin-1 (Nec-1,methyl-thiohydantoin-tryptophan (MTH-Trp)), is a potent and specific inhibitor of necroptosis[1] (a newly identified type of cell death representing a form of programmed necrosis or regulated non apoptotic cell death) by inhibiting the receptor interacting protein 1(RIP1) kinase. Here we report that Nec-1 specifically induces caspase-dependent neutrophils apoptosis and overrides powerful anti-apoptosis signaling from survival factors such as GM-CSF and LPS. We showed that Nec-1 markedly enhanced the resolution of established neutrophil-dependent inflammation in LPS-induced acute lung injury in mice. We also provided evidence that Nec-1 promoted apoptosis by reducing the expression of the anti-apoptotic protein Mcl-1 and increasing the expression of pro-apoptotic protein Bax. Thus, Nec-1 is not only an inhibitor of necroptosis, but also a promoter of apoptosis, of neutrophils, enhancing the resolution of established inflammation by inducing apoptosis of inflammatory cells. Our results suggest that Nec-1 may have potential roles for the treatment of diseases with increased or persistent inflammatory responses.


Luteolin suppresses lipopolysaccharide‑induced cardiomyocyte hypertrophy and autophagy in vitro.

  • Xing Li‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Luteolin (LTL) serves essential roles in a wide variety of biological processes. Lipopolysaccharide (LPS) can lead to myocardial hypertrophy and autophagy. However, the roles of LTL on LPS‑induced cardiomyocyte hypertrophy and autophagy in rat cardiomyocytes have not yet been fully elucidated. In the present study, the morphology of cultured rat cardiomyocytes was observed under an inverted microscope. Cell viability was detected by MTT assay. α‑Actinin and microtubule‑associated protein 1 light chain 3 (LC3) expression levels were measured by immunofluorescence assay. In addition, the expression levels of atrial natriuretic peptide/brain natriuretic peptide (ANP/BNP), LC3, and autophagy‑ and Wnt signaling pathway‑associated genes were analyzed by reverse transcription‑quantitative polymerase chain reaction or western blot assays. The results indicated that LTL increased the cell viability of cardiomyocytes treated with LPS. LTL decreased the expression of cardiac hypertrophy associated markers (ANP and BNP). LTL decreased α‑actinin and LC3 expression levels in LPS‑treated cardiomyocytes. It was also demonstrated that LTL suppressed the mRNA and protein expression levels of LPS‑mediated autophagy and Wnt signaling pathway‑associated genes. In addition, it was demonstrated that silencing of β‑catenin inhibited LPS‑induced cardiomyocyte hypertrophy and the formation of autophagosomes. Thus, the present study suggested that LTL protected against LPS‑induced cardiomyocyte hypertrophy and autophagy in rat cardiomyocytes.


Reduced Annexin A1 Secretion by ABCA1 Causes Retinal Inflammation and Ganglion Cell Apoptosis in a Murine Glaucoma Model.

  • Lu Li‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Variants near the ATP-binding cassette transporter A1 (ABCA1) gene are associated with elevated intraocular pressure and newly discovered risk factors for glaucoma. Previous studies have shown an association between ABCA1 deficiency and retinal inflammation. Using a mouse model of ischemia-reperfusion (IR) induced by acute intraocular pressure elevation, we found that the retinal expression of ABCA1 protein was decreased. An induction of ABCA1 expression by liver X receptor agonist TO901317 reduced retinal ganglion cell (RGC) apoptosis after IR and promoted membrane translocation and secretion of the anti-inflammatory factor annexin A1 (ANXA1). Moreover, ABCA1 and ANXA1 co-localized in cell membranes, and the interaction domain is amino acid 196 to 274 of ANXA1 fragment. TO901317 also reduced microglia migration and activation and decreased the expression of pro-inflammatory cytokines interleukin (IL)-17A and IL-1β, which could be reversed by the ANXA1 receptor blocker Boc2. Overexpression of TANK-binding kinase 1 (TBK1) increased ABCA1 degradation, which was reversed by the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132). Silencing Tbk1 with siRNA increased ABCA1 expression and promoted ANXA1 membrane translocation. These results indicate a novel IR mechanism, that leads via TBK1 activation to ABCA1 ubiquitination. This degradation decreases ANXA1 secretion, thus facilitating retinal inflammation and RGC apoptosis. Our findings suggest a potential treatment strategy to prevent RGC apoptosis in retinal ischemia and glaucoma.


Identification of ceRNA network based on a RNA-seq shows prognostic lncRNA biomarkers in human lung adenocarcinoma.

  • Xing Li‎ et al.
  • Oncology letters‎
  • 2018‎

Previous studies have emphasized the significant functions of long non-coding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) in tumor biology. However, the functions of certain cancer lncRNAs in the lncRNA-related ceRNA network in lung adenocarcinoma (LUAD) are unknown. A systematic and integrative survey of RNA-seq data from The Cancer Genome Atlas (TCGA) was performed to identify candidate lncRNAs for the prognosis of LUAD. In total, 20,502 genes that contain 181 lncRNAs were evaluated in a cohort of 570 LUAD cases. Initially, 6,280 differentially expressed genes (fold-change >2, P<0.05) were obtained using R package, which includes 75 lncRNAs. Next, by univariate regression and multivariate Cox proportional hazards analysis, 32 genes were associated with survival in LUAD. Using these 29 mRNAs and 3 lncRNAs, a prognosis index (PI) was calculated to accurately estimate the survival in LUAD: PI=∑exprisk gene × HRrisk gene. Furthermore, the 32-gene signature was an independent prognostic indicator for LUAD (HR >1; P<0.05, by multivariate analysis). Weighted gene co-expression network analysis (WGCNA) of three risk lncRNAs-FAM138B, NHEG1 and TLX1NB-was performed, based on the P-values of the associated genes, and the top 27 miRNAs that bound to these lncRNAs were predicted by Miranda as target miRNAs. Next, these target miRNAs were transferred to the TarBase, miRTarBase, miRecards and starBase v2.0 databases to obtain their target genes. According to the previous miRNA-mRNA and miRNA-lncRNA data, three lncRNA-miRNA-mRNA ceRNA networks were established, based on the 29 prognostic mRNAs, forming a regulatory network in LUAD. The present study provided insight into the lncRNA-related ceRNA network in LUAD and has identified potential diagnostic and prognostic biomarkers.


Long noncoding RNA NEAT1 promotes cell proliferation, migration, and invasion in hepatocellular carcinoma through interacting with miR-384.

  • Liying Zhu‎ et al.
  • Journal of cellular biochemistry‎
  • 2019‎

It was reported that long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in hepatocellular carcinoma (HCC). However, the underlying mechanism of tumorigenesis is still largely unclear. Here, we found that NEAT1 is remarkably upregulated in HCC tissues and cell lines. Overexpression of NEAT1 notably accelerated HCC cell proliferation, migration, and invasion. Knockdown of NEAT1 significantly inhibited HCC cell proliferation, migration and invasion. MiR-384 expression was lower in HCC tissues and cell lines than adjacent nontumor tissues and L02 cell. MiR-384 exhibited the functions of tumor-suppressive. The expression of miR-384 was negatively correlated with the expression of NEAT1. Overexpression of NEAT1 reduced miR-384 expression, whereas inhibition of miR-384 led to a distinct upregulation of NEAT1 expression. In addition, we provided evidence that miR-384 was directly bound to the sequence of NEAT1 by luciferase reporter and RNA-binding protein immunoprecipitation assays. Overexpression of miR-384 inhibited NEAT1 function. Thus, we demonstrated that NEAT1 promotes the malignant biological properties of hepatocellular carcinoma by negatively regulating miR-384.


Immunostimulatory effect of a composition isolated from white peony root oral liquid in the treatment of radiation-induced esophagitis.

  • Zhiyu Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2013‎

The aim of this study was to explore the immune repairing effect of a composition isolated from white peony root oral liquid (cWPROL), a traditional Chinese herbal composition, in the treatment of experimental radiation-induced esophagitis in rats. A total of 128 Wistar rats were randomly divided into eight groups, irradiated with 43 Gy 60Co γ-rays to induce esophagitis and treated by different methods. Flow cytometry, hematological analysis and immune nephelometry were used to detect the absolute numbers and percentages of CD3+, CD4+ and CD8+ T lymphocytes, numbers and classification of leukocytes, and the levels of IgG and complement C3 in the peripheral blood of the rats at each experimental time point. Following irradiation, the total number of leukocytes, absolute numbers and percentages of CD3+, CD4+ and CD8+ T lymphocytes, and levels of IgG and complement C3 in the peripheral blood of the rats were decreased. Furthermore, the total numbers of leukocytes, absolute numbers and percentages of CD3+, CD4+ and CD8+ T lymphocytes, and levels of IgG and complement C3 in the peripheral blood were higher in the administered with cWPROL by intra-esophageal perfusion compared with those in the untreated irradiated groups, but lower in the groups treated with a mixture of lidocaine hydrochloride, dexamethasone sodium phosphate and gentamicin sulfate. This study suggested that cWPROL is able to repair the impaired cellular and humoral immunity of rats with radiation-induced esophagitis.


Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.

  • Rahul Suresh‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2014‎

Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome.


Mathematical model for radial expansion and conflation of intratumoral infectious centers predicts curative oncolytic virotherapy parameters.

  • Kent Bailey‎ et al.
  • PloS one‎
  • 2013‎

Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost exclusively through radial expansion of randomly distributed infectious centers. From these experimental observations we developed a simple model to calculate the probability of survival for any cell within a treated tumor. The model predicted that small changes to the density of initially infected cells or to the average maximum radius of infected centers would have a major impact on treatment outcome, and this was confirmed experimentally. The new model provides a useful and flexible tool for virotherapy protocol optimization.


Early-Life Exposure to Lead Induces Cognitive Impairment in Elder Mice Targeting SIRT1 Phosphorylation and Oxidative Alterations.

  • Lijie Zhang‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Pb is a potential risk factor for cognition, mainly mediated by enhanced oxidative stress. Resveratrol, a natural polyphenol with crucial anti-oxidative property, is recently implicated in preventing cognitive deficits in normal aging and neurodegenerative disorders. Its beneficial effects have been linked to sirtuin 1(SIRT1) activation. The aim of this work is to investigate the possible linkage between alterations in Pb-induced oxidative damage and cognitive impairment by prolonged treatment of resveratrol. Male C57BL/6 mice were given Pb(Ac)2 treatment or deionized H2O for 12 weeks, and subjected to resveratrol gavage at the dose of 50 mg/kgBw•d or vehicle after Pb exposure. Results from biochemical analysis and immunohistofluorescence showed that Pb induced oxidative DNA damage and decreased cortical antioxidant biomarker. As expected, these abnormalities were improved by resveratrol treatment. Morris water maze test, Western blotting, immunohistofluorescence staining and RT-qPCR indicated that resveratrol ameliorated spatial learning and memory deficits with alterations in hippocampal BDNF-TrkB signaling, promoted nuclear localization and phosphorylation of hippocampal SIRT1, partly increased protein levels of AMPK and PGC-1α involving in modulation of antioxidant response in Pb-exposed mice. Our results support the hypothesis that resveratrol could attenuate Pb-induced cognitive impairment which was associated with activating SIRT1 via modulation of oxidative stress. Additionally, resveratrol also repressed the Pb-induce amyloidogenic processing with resultant decline in cortical Aβ1--40. Noteworthy, such effects were not mediated by resveratrol treatment alone. These findings emphasize the potential of SIRT1 activator as an efficacious dietary intervention to downgrade the Pb-induced neurotoxic lesion.


Quantification of Etoposide Hypersensitivity: A Sensitive, Functional Method for Assessing Pluripotent Stem Cell Quality.

  • Frank J Secreto‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

Human induced pluripotent stem cells (hiPSC) hold great promise in diagnostic and therapeutic applications. However, translation of hiPSC technology depends upon a means of assessing hiPSC quality that is quantitative, high-throughput, and can decipher malignant teratocarcinoma clones from normal cell lines. These attributes are lacking in current approaches such as detection of cell surface makers, RNA profiling, and/or teratoma formation assays. The latter remains the gold standard for assessing clone quality in hiPSCs, but is expensive, time-consuming, and incompatible with high-throughput platforms. Herein, we describe a novel method for determining hiPSC quality that exploits pluripotent cells' documented hypersensitivity to the topoisomerase inhibitor etoposide (CAS No. 33419-42-0). Based on a study of 115 unique hiPSC clones, we established that a half maximal effective concentration (EC50) value of <300 nM following 24 hours of exposure to etoposide demonstrated a positive correlation with RNA profiles and colony morphology metrics associated with high quality hiPSC clones. Moreover, our etoposide sensitivity assay (ESA) detected differences associated with culture maintenance, and successfully distinguished malignant from normal pluripotent clones independent of cellular morphology. Overall, the ESA provides a simple, straightforward method to establish hiPSC quality in a quantitative and functional assay capable of being incorporated into a generalized method for establishing a quality control standard for all types of pluripotent stem cells. Stem Cells Translational Medicine 2017;6:1829-1839.


LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding miR-452-5p.

  • Liying Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Numerous studies have demonstrated that a class of long noncoding RNAs (lncRNAs) are dysregulated in hepatocellular carcinoma (HCC) and they are closely related with tumorigenesis. Our previous studies indicated that LINC00052 was a downregulated lncRNA in HCC and acted as a tumor suppressor gene. Using transcription microarray analysis, we found that knockdown of LINC00052 resulted in EPB41L3 downregulation. However, the function of EPB41L3 and the mechanism of LINC00052 downregulating EPB41L3 in HCC remain unclear. In this study, we found that overexpression of LINC00052 could upregulate the EPB41L3 expression and it might serve as a tumor suppressor gene in HCC. Database analysis showed that miR-452-5P could target LINC00052. The binding regions between LINC00052 and miR-452-5P were confirmed by luciferase assays. Moreover, LINC00052 inhibited cell malignant behavior by increasing miR-452-5P expression, suggesting that LINC00052 was negatively regulated by miR-452-5P. In addition, overexpression of miR-452-5P resulted in a decrease of EPB41L3 expression, suggesting that EPB41L3 was as a target of miR-452-5P. In conclusion, these results demonstrated that a novel pathway was mediated by LINC00052 in HCC.


SAAP-RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing.

  • Zhifu Sun‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2012‎

Reduced representation bisulfite sequencing (RRBS) is a cost-effective approach for genome-wide methylation pattern profiling. Analyzing RRBS sequencing data is challenging and specialized alignment/mapping programs are needed. Although such programs have been developed, a comprehensive solution that provides researchers with good quality and analyzable data is still lacking. To address this need, we have developed a Streamlined Analysis and Annotation Pipeline for RRBS data (SAAP-RRBS) that integrates read quality assessment/clean-up, alignment, methylation data extraction, annotation, reporting and visualization. This package facilitates a rapid transition from sequencing reads to a fully annotated CpG methylation report to biological interpretation.


Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life.

  • Xing Li‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2009‎

In the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus, and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization. We identify specific transcription factors (Hnf4 gamma, Creb3l3, and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan.


Bone metastasis pattern in initial metastatic breast cancer: a population-based study.

  • Zhenchong Xiong‎ et al.
  • Cancer management and research‎
  • 2018‎

Bone is one of the most common sites of breast cancer metastasis, and population-based studies of patients with bone metastasis in initial metastatic breast cancer (MBC) are lacking.


Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways.

  • Lu Ji‎ et al.
  • Oncotarget‎
  • 2017‎

Human bladder cancer is a common genitourinary malignant cancer worldwide. However, new therapeutic strategies are required to overcome its stagnated survival rate. Triterpene glycoside Actein (ACT), extracted from the herb black cohosh, suppresses the growth of human breast cancer cells. Our study attempted to explore the role of ACT in human bladder cancer cell growth and to reveal the underlying molecular mechanisms. We found that ACT significantly impeded the bladder cancer cell proliferation via induction of G2/M cycle arrest. Additionally, ACT administration triggered autophagy and apoptosis in bladder cancer cells, proved by the autophagosome formation, LC3B-II accumulation, improved cleavage of Caspases/poly (ADP-ribose) polymerase (PARP). Furthermore, reduction of reactive oxygen species (ROS) and p-c-Jun N-terminal kinase (JNK) could markedly reverse ACT-induced autophagy and apoptosis. In contrast, AKT and mammalian target of rapamycin (mTOR) were greatly de-phosphorylated by ACT, while suppressing AKT and mTOR activity could enhance the effects of ACT on apoptosis and autophagy induction. In vivo, ACT reduced the tumor growth with little toxicity. Taken together, our findings indicated that ACT suppressed cell proliferation, induced autophagy and apoptosis through promoting ROS/JNK activation, and blunting AKT pathway in human bladder cancer, which indicated that ACT might be an effective candidate against human bladder cancer in future.


Ribosomal protein L18 is an essential factor that promote rice stripe virus accumulation in small brown planthopper.

  • Shuo Li‎ et al.
  • Virus research‎
  • 2018‎

Rice stripe virus (RSV) transmitted by the vector, small brown planthopper (SBPH), can cause a severe rice disease. The nucleocapsid (N) protein is the major component of RSV ribonucleoprotein particles (RNPs), and it plays important roles in viral persistent-propagative transmission by SBPH. To gain further insights into the vector components enabling RSV transmission, a GAL4-based yeast two-hybrid system was utilized to find unknown vector factors that interact with the N protein. Thirteen different proteins were identified as factors that interact with the N protein. The interaction between 60S ribosomal protein L18 (RPL18) and the N protein was further studied. Although the expression of RPL18 was not altered in insects during RSV infection, RPL18 was validated to bind directly to RSV RNPs and interact with RSV N protein. Knockdown of RPL18 dramatically reduced viral RNA and protein levels, especially viral protein expression, indicating a requirement for RPL18 in RSV translation and replication. Our results provide evidence that RPL18 is a critical factor required for RSV accumulation in SBPH, which suggests that the vector factor RPL18 may be as a potential target to develop for controlling the transmission of rice virus.


High glucose upregulates myosin light chain kinase to induce microfilament cytoskeleton rearrangement in hippocampal neurons.

  • Liying Zhu‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Chronic hyperglycemia leads to myosin light chain kinase (MLCK) upregulation and induces neuronal damage. However, the underlying molecular mechanism of neuronal damage in hyperglycemia has not yet been fully elucidated. In the present study, hippocampal neuronal cells were cultured and treated with a high glucose concentration (45 mmol/l). The results demonstrated that high glucose induced shrinking of the synapses, nuclear shape irregularity and microfilament damage. Filamentous actin (F‑actin) filaments were rearranged, cell apoptosis rate was increased and the protein expression of MLCK and phosphorylated (p)‑MLC was upregulated. The MLCK inhibitor ML‑7 largely reversed the alterations in the microfilament cytoskeleton, inhibited F‑actin depolymerization, reduced apoptosis and downregulated MLCK and p‑MLC protein expression. Overall, these results indicated that high glucose upregulated MLCK to promote F‑actin depolymerization, which induced microfilament cytoskeleton rearrangement in hippocampal neuronal cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: