Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Antioxidant Capacity-Related Preventive Effects of Shoumei (Slightly Fermented Camellia sinensis) Polyphenols against Hepatic Injury.

  • Ruokun Yi‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Shoumei is a kind of white tea (slightly fermented Camellia sinensis) that is rich in polyphenols. In this study, polyphenols were extracted from Shoumei. High-performance liquid chromatography (HPLC) showed that the polyphenols included mainly gallic acid, catechin, hyperoside, and sulfuretin. In an in vitro experiment, H2O2 was used to induce oxidative damage in human normal hepatic L-02 cells. In an animal experiment, CCl4 was used to induce liver injury. The in vitro results showed that Shoumei polyphenols inhibited oxidative damage in normal hepatic L-02 cells, and the in vivo results showed that the polyphenols effectively reduced liver index values in mice with liver injury. The polyphenols also decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), malondialdehyde (MDA), interleukin 6 (IL-6), interleukin 12 (IL-12), tumour necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) levels and increased albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the serum of mice with liver injury. Furthermore, pathological observation showed that the Shoumei polyphenols reduced CCl4-induced hepatocyte damage. qRT-PCR and Western blotting showed that the polyphenols upregulated the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese- (Mn-) SOD, copper/zinc- (Cu/Zn-) SOD, CAT, and inhibitor of nuclear factor kappa B (NF-κB) alpha (IκB-α) and downregulated the expression of inducible nitric oxide synthase (iNOS) and NF-κB p65. The Shoumei polyphenols had a preventive effect against CCl4-induced mouse liver injury equivalent to that of silymarin. The four polyphenols identified as the key substances responsible for this effect mediated the effect through their antioxidant capacity. These results suggest that Shoumei polyphenols are high-quality natural products with liver-protective effects.


Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions.

  • Muhammad Bilal‎ et al.
  • Poultry science‎
  • 2021‎

Probiotics are being developed as alternatives to antibiotic growth promoters. The aim of the study was to investigate the effects of 2 novel strains of Bacillus pumilus and Bacillus subtilis on production, intestinal microbiota, gut health, and immunity of broilers raised under suboptimal conditions. Day-old chicks (Cobb 500, n = 2,073) were randomly assigned into 6 groups: Con group (group fed with basal diet), Ab group (group treated with virginiamycin), groups treated with 2 levels of B. pumilus (low dose: 3 × 108 cfu/kg of feed [BPL] and high dose: 1 × 109 cfu/kg [BPH]), and groups treated with 2 levels of B. subtilis (low dose: 3 × 108 cfu/kg [BSL] and high dose: 1 × 109 cfu/kg [BSH]). Production parameters were recorded weekly. Cecal tonsils and content as well as ileum samples were collected on day 14 and day 42. Cecal tonsils were used to sort T-regulatory cells (CD4+CD8-CD25+ and CD4+CD8+CD25+) to study expression of IL-10 and interferon gamma, whereas cecal content was used for bacterial culture. Ileum samples were used to measure gene expression of tight junction proteins, mucin, and cytokines. BW and feed intake increased in the Ab, BPL, BSL, and BSH groups compared with the Con group between day 35 and day 42. The CD4+CD8-CD25+ cells expressed high levels of IL-10 in the BSH group on day 14 and in the BPL, BSL, and BSH groups on day 42 and high levels of interferon gamma in the BPL, BSL, and BSH groups on day 14 and in the BSL and BSH groups on day 42. The expression of IL-10 and interferon gamma in CD4+CD8+CD25+ cells was higher only in the BSH group on day 14 and day 42. Cecal bacterial populations of genera, Lactobacillus (day 14 and day 42) and Clostridium (day 14), were higher in the BSH group. Expression of tight junction protein increased significantly in the ileum on day 14 in the BPL (occludin, zona occludens 1 [ZO-1]), BSL (occludin, ZO-1), and BSH (occludin, ZO-1, junctional adhesion molecule 2 [JAM-2]) groups compared with that in the Con group and declined in all groups except in the BSH group (occludin, ZO-1, JAM-2) on day 42. Expression of MUC2 and IL-17F increased in all groups on day 14 and remained high on day 42 in the BSL and BSH groups. Taken together, both Bacillus probiotics altered the intestinal and immune activities, particularly on day 14, suggesting beneficial influence of probiotics.


Liubao Insect tea polyphenols prevent HCl/ethanol induced gastric damage through its antioxidant ability in mice.

  • Jing Zhang‎ et al.
  • RSC advances‎
  • 2020‎

The aim of this study was to study the preventive effects of polyphenols extracted from Liubao Insect tea on gastric injury. The content of Liubao Insect tea polyphenols (LITP) was 72.36% by ion precipitation extraction method. HCl/ethanol-induced gastric injury in mice led to increased gastric juice volume and decreased pH. LITP increased the gastric juice pH value and reduced the gastric juice volume at slightly lower quantities than ranitidine. Visual observation of gastric tissue showed that LITP could effectively reduce the area of gastric injury, and higher concentrations of LITP had a greater effect. Pathological observation also confirmed that LITP can reduce the cell damage and inflammatory effects, and play a role in preventing gastric injury. Serum cytokine assays showed that LITP could reduce the levels of IL-6 (interleukin 6), TNF-α (tumor necrosis factor alpha) and IFN-γ (interferon gamma) induced by gastric injury, and the effects of higher concentration of LITP were similar to those of ranitidine. The results showed that LITP could increase SOD (superoxide dismutase) and GSH (glutathione) levels; decrease MDA (malondialdehyde) and MPO (myeloperoxidase) levels; up-regulate the expression of Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase); and down-regulate the expression of iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), TNF-α, and IL-1β (interleukin-1 beta) in mice with gastric injury, thus inhibiting gastric injury. We demonstrate that LITP is an active substance which could prevent gastric injury in experimental animals. With the increase of LITP concentration, its effects on preventing gastric injury were stronger and similar to those of ranitidine.


White Peony (Fermented Camellia sinensis) Polyphenols Help Prevent Alcoholic Liver Injury via Antioxidation.

  • Yalin Zhou‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

White peony is a type of white tea (Camellia sinensis) rich in polyphenols. In this study, polyphenols were extracted from white peony. In vitro experiments showed that white peony polyphenols (WPPs) possess strong free radical scavenging capabilities toward 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Long-term alcohol gavage was used to induce alcoholic liver injury in mice, and relevant indices of liver injury were examined. WPPs effectively reduced the liver indices of mice with liver injury. The serum levels of aspartate aminotransferase (ATS), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), and malondialdehyde (MDA) were downregulated, while those of albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were upregulated. WPPs also reduced the serum levels of interluekin-6 (IL-6), interluekin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) in mice with liver injury. Pathology results showed that WPPs reduced alcohol-induced liver cell damage. Quantitative polymerase chain reaction (qPCR) and western blot results revealed that WPPs upregulated the mRNA and protein expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro-zinc superoxide dismutase (Cu/Zn-SOD), and CAT and downregulated iNOS expression in the liver of mice with liver injury. WPPs protected against alcoholic liver injury, and this effect was equivalent to that of silymarin. High-performance liquid chromatography revealed that WPPs mainly contained the polyphenols gallic acid, catechinic acid, and hyperoside, which are critical for exerting preventive effects against alcoholic liver injury. Thus, WPPs are high-quality natural products with liver protective effects.


Effects of Lactobacillus fermentum CQPC04 on Lipid Reduction in C57BL/6J Mice.

  • Ruokun Yi‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Probiotics are functional foods that can effectively regulate lipid reduction and maintain body health. In this study, a strain of Lactobacillus fermentum CQPC04 (LF-CQPC04) isolated from traditional naturally fermented vegetables (Sichuan pickles) was studied, and its effects on lipid reduction in mice, as well as its mechanism of action, were observed. The results of this experiment show that LF-CQPC04 can reduce the abnormal weight gain and abnormal visceral index of mice caused by a high-fat diet. LF-CQPC04 can decrease TG (triglycerides), TC (total cholesterol), LDL-c (low-density lipoprotein cholesterol), AST (aspartate transaminase), ALT (alanine aminotransferase), and AKP (alkaline phosphatase) levels and increase HDL-c (high-density lipoprotein cholesterol) levels in the serum of high-fat mice. LF-CQPC04 can also decrease the levels of inflammatory cytokines, such as IL-6 (interleukin-6), IL-1β (interleukin-1 beta), TNF-α (tumor necrosis factor alpha), and IFN-γ (interferon gamma), and increase IL-4 and IL-10 levels in the serum of high-fat mice. The results of RT-qPCR (real-time quantitative polymerase chain reaction) and western blot experiments show that LF-CQPC04 can also down-regulate the expression of PPAR-γ (peroxisome proliferator-activated receptor gamma), C/EBP-α (CCAAT/enhances binding protein alpha) mRNA, and protein in the liver tissue of high-fat mice, while up-regulating the expression of Cu/Zn-SOD (copper/zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), CYP7A1 (cholesterol 7 alpha hydroxylase), PPAR-α (peroxisome proliferator-activated receptor alpha), CPT1 (carnitine palmitoyl transferase 1), LPL (lipoprotein lipase), and ABCA1 (ATP-binding cassette transporter A1). Moreover, LF-CQPC04 shows stronger effects in regulating lipid reduction in mice than L-carnitine and commercial LB (Lactobacillus delbrueckii subsp. Bulgaricus) bacteria. LF-CQPC04 is beneficial for lipid reduction in animals and has good probiotic potential.


Intervention effects of lotus leaf flavonoids on gastric mucosal lesions in mice infected with Helicobacter pylori.

  • Ruokun Yi‎ et al.
  • RSC advances‎
  • 2020‎

Helicobacter pylori (H. pylori) is one of the main factors that cause gastric lesions. The lotus leaf is an edible plant used in traditional Eastern medicine. This study evaluates the intervention effects of lotus leaf flavonoids (LLF) on gastric mucosal lesions in mice infected with H. pylori and explores their mechanism of action. High-performance liquid chromatography analysis reveals that LLF contain kaempferitrin (kaempferol-3,7-dirhamnoside), hypericin, astragalin (kaempferol-3-glucoside), phlorizin, and quercetin. LLF can reduce the number of gastric mucosal lesions and tissue lesions in mice with H. pylori-induced gastric lesions. LLF can increase the levels of somatostatin and vasoactive intestinal peptide in the serum of mice with gastric lesions and decrease the levels of substance P and endothelin-1 to inhibit gastric lesions. LLF can also reduce the levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α, and interferon-gamma cytokines in the serum of mice with gastric lesions. Using a quantitative polymerase chain reaction assay it can be seen that LLF can downregulate mRNA expressions of TNF-α, IL-1β, myeloperoxidase, keratin (KRT) 16, KRT6b, and transglutaminase 3 epidermal in the gastric tissues of mice with gastric lesions. Western blot analysis indicates that LLF can downregulate the protein expressions of caspase-1, Nod-like receptor protein 3, IL-1β, TNF-α, and Toll-like receptor 4 in the gastric tissues of mice with gastric lesions. LLF have beneficial effects on gastric lesions induced by H. pylori. Meanwhile LLF is more active in competition with ranitidine. LLF represent an active substance that can inhibit H. pylori-induced gastric lesions. The flavones of LLF may enhance the inhibition of gastric mucosal lesions by promoting the interaction between the compounds.


Preventive Effect of Lactobacillus fermentum CQPC08 on 4-Nitroquineline-1-Oxide Induced Tongue Cancer in C57BL/6 Mice.

  • Bihui Liu‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2019‎

Lactobacillus fermentum CQPC08 (LF-CQPC08) is a newly discovered strain of bacteria isolated and identified from traditional pickled vegetables in Sichuan, China. We used 4-nitroquinoline 1-oxide to establish an experimental tongue cancer mouse model to evaluate the preventive effect of LF-CQPC08 on tongue cancer in vivo. Lactobacillus delbruechii subsp. bulgaricus, is a common commercial strain and is used as a positive control to compare the effect with LF-CQPC08. The preventive strength and mechanism of LF-CQPC08 on tongue cancer were determined by measuring the biochemical indicators in mouse serum and tissues. Our results showed LF-CQPC08 inhibits the decline of splenic index, thymus index, percentage of phagocytic macrophages, and phagocytic index effectively. LF-CQPC08 also increased levels of mouse serum granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), immunoglobulin (Ig)G, IgM levels of serum interleukin (IL)-4, IL-12, tumor necrosis factor-alpha, and interferon-gamma levels, thereby inhibiting the decline in immunity caused by tongue cancer. It also increased the activity levels of superoxide dismutase and glutathione peroxidase and decreased the levels of malondialdehyde in the tissues of the tongue cancer mouse model, thereby suppressing the oxidative stress damage in the tissue caused by tongue cancer. Through quantitative PCR, LF-CQPC08 upregulated the mRNA expression of nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione-S-transferases-π (GST-π), and Bcl-2-associated X protein (Bax), and downregulated the mRNA expression of p53, p63, p73, phosphatase and tensin homolog (PTEN), B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL) in the tongue tissues of the tongue cancer mouse. These results indicated that LF-CQPC08 reduced the influence of tongue cancer on the immune system and oxidative balance and improved the immunity and enhanced antioxidant capacity of the mouse model, thereby preventing tongue cancer. LF-CQPC08 could be used as a microbial resource with a preventive effect on tongue cancer.


Saikosaponin A Inhibits Breast Cancer by Regulating Th1/Th2 Balance.

  • Xin Zhao‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Saikosaponin A (SSa) is isolated from the dried root of Radix Bupleuri, an herb widely used in traditional Chinese medicine, exerting antitumor activities. The T helper cell type 1(Th1)/Th2 balance is associated with antitumor immunity in breast cancer. The present study aimed to investigate the effects of SSa on Th1/Th2 balance in breast cancer and to explore the underlying mechanisms. Breast cancer in rats was induced by intragastrical administration of 7,12-dimethyl-benz[a] anthracene once (100 mg/kg). At d91, the rats suffering from tumors were randomly divided into three groups and treated with vehicle solution (control group), tamoxifen (TAM group), and SSa (SSa group) daily for 56 days, respectively. The tumor volume reduction ratio and tumor cell proliferation were detected to assess the antitumor effect of SSa. The positive staining numbers of CD8+ and CD4+ T cells infiltrated in breast tumors were measured by immunohistochemistry to evaluate the antitumor immunity of SSa. Cytokine levels in serum secreted by Th1 cells [interferon gamma (IFN-γ), interleukin (IL)-12] and Th2 cells (IL-4, IL-10) were detected to evaluate Th1/Th2 balance. The related molecules of IL-12/signal transducers and activators of transcription 4 (STAT4) pathway were detected by immunohistochemistry staining, RT-PCR, and Western blot to explore the mechanisms of SSa. The results showed that, compared with the control group, SSa significantly inhibited tumor growth and tumor cell proliferation. SSa enhanced antitumor immunity, which was demonstrated as increased CD8+ T cells and CD4+ T cells infiltrated in tumors. SSa shifted Th1/Th2 balance toward Th1, which was confirmed as increased serum IFN-γ and IL-12 levels, while decreased serum IL-4 and IL-10 levels. SSa increased IL-12, IL-12 receptor, and phosphorylated STAT4 expressions to promote Th1 differentiation. In conclusion, the present work suggested that SSa could inhibit breast cancer growth by shifting Th1/Th2 balance toward Th1. The underlying mechanism may involve activation of the IL-12/STAT4 pathway that induced Th1 differentiation.


Isolation and Identification of Lactobacillus plantarum HFY05 from Natural Fermented Yak Yogurt and Its Effect on Alcoholic Liver Injury in Mice.

  • Ruokun Yi‎ et al.
  • Microorganisms‎
  • 2019‎

Yak yogurt is a type of naturally fermented dairy product prepared by herdsmen in the Qinghai-Tibet Plateau, which is rich in microorganisms. In this study, a strain of Lactobacillus plantarum was isolated and identified from yak yogurt in Hongyuan, Sichuan Province and named Lactobacillus plantarum HFY05 (LP-HFY05). LP-HFY05 was compared with a common commercial strain of Lactobacillus delbrueckii subsp. bulgaricus (LDSB). LP-HFY05 showed better anti-artificial gastric acid and bile salt effects than LDSB in in vitro experiments, indicating its potential as a probiotic. In animal experiments, long-term alcohol gavage induced alcoholic liver injury. LP-HFY05 effectively reduced the liver index of mice with liver injury, downregulated the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglyceride, total cholesterol, blood urea nitrogen, nitric oxide, and MDA and upregulated the levels of albumin, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the serum of liver-injured mice. LP-HFY05 also reduced the levels of interleukin (IL)-6, IL-12, tumor necrosis factor-alpha, and interferon-gamma in the serum of liver-injured mice. The pathological observations showed that LP-HFY05 reduced the damage to liver cells caused by alcohol. Quantitative polymerase chain reaction and Western blot assays further showed that LP-HFY05 upregulated neuronal nitric oxide synthase, endothelial nitric oxide synthase, manganese-SOD, cuprozinc-SOD, CAT, and inhibitor of κB-α mRNA and protein expression and downregulated the expression of nuclear factor-κB-p65 and inducible nitric oxide synthase in the livers of liver-injured mice. A fecal analysis revealed that LP-HFY05 regulated the microbial content in the intestinal tract of mice with liver injury, increased the content of beneficial bacteria, including Bacteroides, Bifidobacterium, and Lactobacillus and reduced the content of harmful bacteria, including Firmicutes, Actinobacteria, Proteobacteria, and Enterobacteriaceae, thus, regulating intestinal microorganisms to protect against liver injury. The effect of LP-HFY05 on liver-injured mice was better than that of LDSB, and the effect was similar to that of silymarin. LP-HFY05 is a high-quality microbial strain with a liver protective effect on experimental mice with alcoholic liver injury.


Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice.

  • Bihui Liu‎ et al.
  • Biomolecules‎
  • 2019‎

A high-fat diet-induced C57BL/6N mouse model of non-alcoholic fatty liver disease (NAFLD) was established. The effect and mechanism of Raw Bowl Tea polyphenols (RBTP) on preventing NAFLD via regulating intestinal function were observed. The serum, liver, epididymis, small intestine tissues, and feces of mice were examined by biochemical and molecular biological methods, and the composition of RBTP was analyzed by HPLC assay. The results showed that RBTP could effectively reduce the body weight, liver weight, and liver index of NAFLD mice. The serum effects of RBTP were: (1) decreases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), D-lactate (D-LA), diamine oxidase (DAO), lipopolysaccharide (LPS), and an increase of high density lipoprotein cholesterol (HDL-C) levels; (2) a decrease of inflammatory cytokines such as interleukin 1 beta (IL-1β), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α), and interferon gamma (INF-γ); (3) a decrease the reactive oxygen species (ROS) level in liver tissue; and (4) alleviation of pathological injuries of liver, epididymis, and small intestinal tissues caused by NAFLD and protection of body tissues. qPCR and Western blot results showed that RBTP could up-regulate the mRNA and protein expressions of LPL, PPAR-α, CYP7A1, and CPT1, and down-regulate PPAR-γ and C/EBP-α in the liver of NAFLD mice. In addition, RBTP up-regulated the expression of occludin and ZO-1, and down-regulated the expression of CD36 and TNF-α in the small intestines of NAFLD mice. Studies on mice feces showed that RBTP reduced the level of Firmicutes and increased the minimum levels of Bacteroides and Akkermansia, as well as reduced the proportion of Firmicutes/Bacteroides in the feces of NAFLD mice, which play a role in regulating intestinal microecology. Component analysis showed that RBTP contained seven polyphenolic compounds: Gallic acid, (-)-epigallocatechin, catechin, L-epicatechin, (-)-epigallocatechin gallate, (-)-gallocatechin gallate, and (-)-epicatechin gallate (ECG), and high levels of caffeine, (-)-epigallocatechin (EGC), and ECG. RBTP improved the intestinal environment of NAFLD mice with the contained active ingredients, thus playing a role in preventing NAFLD. The effect was positively correlated with the dose of 100 mg/kg, which was even better than that of the clinical drug bezafibrate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: