Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 145 papers

Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype.

  • James C McGann‎ et al.
  • eLife‎
  • 2014‎

The bivalent hypothesis posits that genes encoding developmental regulators required for early lineage decisions are poised in stem/progenitor cells by the balance between a repressor histone modification (H3K27me3), mediated by the Polycomb Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). In this study, we test whether this mechanism applies equally to genes that are not required until terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST) because it is expressed highly in stem cells and is an established global repressor of terminal neuronal genes. Elucidation of the REST complex, and comparison of chromatin marks and gene expression levels in control and REST-deficient stem cells, shows that REST target genes are poised by a mechanism independent of Polycomb, even at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor complex that relies on histone deacetylase activity. Thus, chromatin distinctions between pro-neural and terminal neuronal genes are established at the embryonic stem cell stage by two parallel, but distinct, repressor pathways.


Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5.

  • Pengjuan Gong‎ et al.
  • Virology‎
  • 2016‎

Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.


Dysfunctional gut microbiota and relative co-abundance network in infantile eczema.

  • Heping Wang‎ et al.
  • Gut pathogens‎
  • 2016‎

Infantile eczema is an immunological disease that is characterized by itchy and dry skin. Recent studies have suggested that gut microbiota (GM) plays a role in the development and progression of eczema. To further evaluate this potential link, we collected feces from 19 infants with eczema and 14 infants without eczema and analyzed the molecular discrepancies between the two groups using 16S rDNA analysis.


Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao.

  • Xin Feng‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO₄ and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses.


Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice.

  • Tan Zhang‎ et al.
  • Aging cell‎
  • 2016‎

Loss of strength in human and animal models of aging can be partially attributed to a well-recognized decrease in muscle mass; however, starting at middle-age, the normalized force (force/muscle cross-sectional area) in the knee extensors and single muscle fibers declines in a curvilinear manner. Strength is lost faster than muscle mass and is a more consistent risk factor for disability and death. Reduced expression of the voltage sensor Ca(2+) channel α1 subunit (Cav1.1) with aging leads to excitation-contraction uncoupling, which accounts for a significant fraction of the decrease in skeletal muscle function. We recently reported that in addition to its classical cytoplasmic location, fast skeletal muscle troponin T3 (TnT3) is fragmented in aging mice, and both full-length TnT3 (FL-TnT3) and its carboxyl-terminal (CT-TnT3) fragment shuttle to the nucleus. Here, we demonstrate that it regulates transcription of Cacna1s, the gene encoding Cav1.1. Knocking down TnT3 in vivo downregulated Cav1.1. TnT3 downregulation or overexpression decreased or increased, respectively, Cacna1s promoter activity, and the effect was ablated by truncating the TnT3 nuclear localization sequence. Further, we mapped the Cacna1s promoter region and established the consensus sequence for TnT3 binding to Cacna1s promoter. Systemic administration of BDA-410, a specific calpain inhibitor, prevented TnT3 fragmentation, and Cacna1s and Cav1.1 downregulation and improved muscle force generation in sedentary old mice.


The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

  • Stephen A Goff‎ et al.
  • Frontiers in plant science‎
  • 2011‎

The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.


The Polysaccharides from Codonopsis pilosula Modulates the Immunity and Intestinal Microbiota of Cyclophosphamide-Treated Immunosuppressed Mice.

  • Yu-Ping Fu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Based on previous studies about microflora regulation and immunity enhancement activities of polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (CPP), there is little study on intestinal mucosal immunity, which is a possible medium for contacting microflora and immunity. In the present study, the BALB/c mice were divided into five groups (eight mice in each group), including a normal group (Con), a model control group (Model), and model groups that were administered CPP (50, 100, 200 mg/kg/d) orally each day for seven days after intraperitoneal injection of 60 mg/kg BW/d cyclophosphamide (CP) for three days. CPP recovered the spleen index and restored the levels of IFN-γ, IL-2, IL-10, as well as serum IgG. In addition, it elevated ileum secretory immunoglobulin A (sIgA), the number of Lactobacillus and acetic acid content in cecum. These results indicated that CPP plays an important role in the protection against immunosuppression, especially mucosa immune damage, and the inhibition of pathogenic bacteria colonization, which could be considered a potential natural source of immunoregulator.


Er-Miao-Fang Extracts Inhibits Adipose Lipolysis and Reduces Hepatic Gluconeogenesis via Suppression of Inflammation.

  • Wenjun Zhao‎ et al.
  • Frontiers in physiology‎
  • 2018‎

High-fat-diet (HFD) feeding induces adipose dysfunction. This study aims to explore whether the Traditional Chinese Medical prescription Er-Miao-Fang could ameliorate adipose dysfunction and prevent hepatic glucose output. Short-term HFD feeding induced adipose lipolysis accompanied with enhanced hepatic glucose output in mice. Adipose lipolysis is initiated by cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling. Oral administration Er-Miao-Fang inhibited inflammation in adipose tissue by dephosphorylation of JNK and reducing TNF-α and IL-1β production, and thus preserved phosphodiesterase 3B (PDE3B) induction, contributing to preventing cAMP accumulation. As a result, from suppression of PKA activation, Er-Miao-Fang reduced fatty acids and glycerol release from adipose tissue due to the inhibition hormone-sensitive lipase (HSL). By blocking the traffic of fatty acids and inflammatory mediators from adipose tissue to the liver, Er-Miao-Fang attenuated hepatic cAMP/PKA signaling by protecting phosphodiesterase 4B (PDE4B) induction from inflammatory insult, and thereby reduced hepatic glucose production by suppression of hepatic glucagon response in HFD-fed mice. In conclusion, Er-Miao-Fang prevented adipose lipolysis by suppression of inflammation, contributing to reducing excessive hepatic glucose output. These findings present a new view of regulating gluconeogenesis and provide the guiding significance for the regulation of multi-link targets with Traditional Chinese Medicine.


Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo.

  • Lvyi Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)-induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-px), glutathione, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured after the rats were killed. iNOS, COX-2, NF-κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH-px, glutathione-S-transferase, TNF-α, IL-6 and IL-1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX-2, NF-κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS-mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N-acetyl-l-cysteine, in LPS-stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.


Circulating MiRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults.

  • Tan Zhang‎ et al.
  • Aging‎
  • 2017‎

Gait speed is a useful predictor of adverse outcomes, including incident mobility disability and mortality in older adults. While aerobic exercise training (AEX) is generally an effective therapy to improve gait speed, individual responses are highly variable. Circulating microRNAs (miRNAs) may contribute to inter-individual changes in gait speed with AEX. We examined whether plasma miRNAs are associated with gait speed changes (dGaitSp) in 33 obese older adults (age: 69.3±3.6 years, BMI: 34.0±3.1 kg/m2, 85% white, 73% women) who performed treadmill walking, 4 days/week for 5 months. Gait speed (baseline: 1.02±0.19 m/s; range of response: -0.2 to 0.35 m/s) was assessed using a 400 meter-fast-paced walk test. Using Nanostring technology, 120 out of 800 miRNAs were found to be abundantly expressed in plasma and 4 of these were significantly changed after AEX: miR-376a-5p increased, while miR-16-5p, miR-27a-3p, and miR-28-3p all decreased. In addition, baseline miR-181a-5p levels (r=-0.40, p=0.02) and percent changes in miR-92a-3p (r=-0.44, p=0.009) associated negatively with dGaitSp. Linear regression combined baseline miR-181a-5p and miR-92a-3p levels showed even stronger associations with dGaitSp (r=-0.48, p=0.005). These results suggest that circulating miR-181a-5p and miR-92a-3p may predict and/or regulate AEX-induced gait speed changes in obese older adults.


Hepatoprotective effect of Herpetospermum caudigerum Wall. on carbon tetrachloride-induced hepatic fibrosis in rats.

  • Xin Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Tibetan medicine Herpetospermum caudigerum Wall. (HCW) has long been employed to treat hepatitis, inflammatory diseases and jaundice according to the records of "The Four Medical Tantras" in China. This study was investigated to explore the protective effects of HCW on hepatic fibrosis and the possible mechanism in a rat model. Hepatic fibrosis was established by intragastric administration of 3 ml/kg carbon tetrachloride (CCl4 ) twice a week for 6 weeks. CCl4 -treated rats were received HCW (1 and 3 g/kg/d) and silymarin (0.1 g/kg/d) from 3 to 6 weeks. The results showed that HCW could significantly decrease the levels of AST, ALT, HA, LN, PCIII, Col IV, TNF-α, IL-1β and IL-6. Moreover, HCW could effectively inhibit collagen deposition and reduce the pathological damage. Analysis experiments finally exhibited that HCW was able to markedly inhibit hepatic fibrosis by modulating the expressions of NF-κB p65, IκBα, Samd3 and TGF-β1 proteins. Therefore, our results suggest that HCW has hepatoprotective activity against CCl4 -induced hepatic fibrosis in rats by regulating the inflammatory responses.


Genome-wide analysis of maize OSCA family members and their involvement in drought stress.

  • Shuangcheng Ding‎ et al.
  • PeerJ‎
  • 2019‎

Worldwide cultivation of maize is often impacted negatively by drought stress. Hyperosmolality-gated calcium-permeable channels (OSCA) have been characterized as osmosensors in Arabidopsis. However, the involvement of members of the maize OSCA (ZmOSCA) gene family in response to drought stress is unknown. It is furthermore unclear which ZmOSCA gene plays a major role in genetic improvement of drought tolerance in Maize.


Efficacy and safety of oral traditional Chinese patent medicine for chronic cerebral circulation insufficiency patients: A protocol for a systematic review and network meta-analysis.

  • Zhongbo Xu‎ et al.
  • Medicine‎
  • 2019‎

Chronic cerebral circulation insufficiency (CCCI) is a common clinical cerebrovascular disease, especially among middle-aged and elderly patients, which seriously endangers their quality of life and physical and mental health. At present, Oral traditional Chinese patent medicine (OTCPM) is widely used in the treatment of CCCI in China, but its actual efficacy and safety lack of evidence-based evidence. Therefore, we will screen out the most effective OTCPM through a systematic review and network meta-analysis to provide a reliable theoretical basis for clinical decisions.


Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections.

  • Mengjun Cheng‎ et al.
  • Scientific reports‎
  • 2017‎

Phage-derived lysins can hydrolyse bacterial cell walls and show great potential for combating Gram-positive pathogens. In this study, the potential of LysEF-P10, a new lysin derived from a isolated Enterococcus faecalis phage EF-P10, as an alternative treatment for multidrug-resistant E. faecalis infections, was studied. LysEF-P10 shares only 61% amino acid identity with its closest homologues. Four proteins were expressed: LysEF-P10, the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain (LysEF-P10C), the putative binding domain (LysEF-P10B), and a fusion recombination protein (LysEF-P10B-green fluorescent protein). Only LysEF-P10 showed highly efficient, broad-spectrum bactericidal activity against E. faecalis. Several key functional residues, including the Cys-His-Asn triplet and the calcium-binding site, were confirmed using 3D structure prediction, BLAST and mutation analys. We also found that calcium can switch LysEF-P10 between its active and inactive states and that LysEF-P10B is responsible for binding E. faecalis cells. A single administration of LysEF-P10 (5 μg) was sufficient to protect mice against lethal vancomycin-resistant Enterococcus faecalis (VREF) infection, and LysEF-P10-specific antibody did not affect its bactericidal activity or treatment effect. Moreover, LysEF-P10 reduced the number of Enterococcus colonies and alleviated the gut microbiota imbalance caused by VREF. These results indicate that LysEF-P10 might be an alternative treatment for multidrug-resistant E. faecalis infections.


Evaluating drug distribution and release in ophthalmic emulsions: Impact of release conditions.

  • Yixuan Dong‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

The purpose of this study is to investigate the process of drug distribution and mechanism of drug release of ophthalmic emulsions in the context of factors associated with the drug release. Cyclosporine and difluprednate emulsions were chosen as model systems. A kinetic method was used to quantitatively evaluate the drug distribution within a simplified biphasic (emulsion) system. The impacts of release associated factors were investigated, including the amount of sodium dodecyl sulfate (SDS), ethanol, and ionic strength in the release medium as well as the temperature. SDS and ethanol were found to significantly enhance both rate and extent of drug diffusion from oil to aqueous phase for both cyclosporine and difluprednate emulsions. The ionic strength was found to decrease the rate and extent of cyclosporine transfer from oil to aqueous phase but had little impact on the transfer of difluprednate between phases. Diffusion of cyclosporine to aqueous phase exhibited a decreasing trend with increasing temperature due to its atypical temperature dependent solubility in water. Based on our previous method to investigate the impact of formulation variables on drug diffusion and the findings in the current study, a biphasic release model for emulsions is proposed and discussed. Lastly, the underlying relationship of three key quality attributes (i.e., globule size distribution, drug distribution, and release characteristics) and their effect on product quality and performance were discussed. This study provides a fundamental insight into the drug distribution and release in complex emulsion systems. It also elucidates the critical variables for the development of in vitro release method to support regulatory assessment of ophthalmic emulsions and formulation development.


The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model.

  • Mengjun Cheng‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.


Identification and Characterization of Dpo42, a Novel Depolymerase Derived from the Escherichia coli Phage vB_EcoM_ECOO78.

  • Zhimin Guo‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Biofilm formation, one of the most important virulence factors of pathogenic bacteria, protects bacteria against desiccation, antibiotics, phages and host immune responses. However, phage-derived depolymerases show antibiofilm activity and demonstrate great potential to treat infections caused by biofilm-forming bacteria. In this study, the Escherichia coli phage vB_EcoM_ECOO78 was isolated and characterised, and we observed its ability to lyse five out of 34 tested E. coli clinical isolates. The highest phage titre was observed at a multiplicity of infection of 10-5 and a burst size of approximately 74 plaque forming units (PFU)/infection. Electron micrographs indicated that vB_EcoM_ECOO78 belongs to the family Myoviridae. The presence of increasing halos surrounding the lysis plaques formed by vB_EcoM_ECOO78 indicated that this phage may encode a depolymerase. Based on a sequencing analysis, the complete genome of vB_EcoM_ECOO78 was found to be 41,289 bp in size, with a GC content of 53.07%. Additionally, vB_EcoM_ECOO78 has 56 predicted open reading frames, 51 (91.07%) of which are assumed to be functional. A BLAST analysis indicated that ORF42 of vB_EcoM_ECOO78 (Dpo42) has low identity with other reported phage-associated depolymerases. Dpo42 was expressed and purified as a soluble protein using E. coli BL21. The biofilm formation ability of E. coli isolates and the antibiofilm activity of Dpo42 were tested by performing spot assays and using a 96-well micro-titre plate method. Dpo42 degraded the capsular polysaccharides surrounding E. coli and exhibited dose-dependent biofilm-formation prevention activity. Based on these results, Dpo42 appears to be a novel phage-derived depolymerase that represents a new potential strategy for preventing E. coli biofilm formation.


Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models.

  • Meng-Yun Liu‎ et al.
  • World journal of gastroenterology‎
  • 2017‎

To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model.


Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production.

  • Min Zhang‎ et al.
  • Cell death & disease‎
  • 2017‎

Previous studies have demonstrated that rodent stem Leydig cell (SLC) transplantation can partially restore testosterone production in Leydig cell (LC)-disrupted or senescent animal models, which provides a promising approach for the treatment of hypogonadism. Here, we isolated human SLCs prospectively and explored the potential therapeutic benefits of human SLC transplantation for hypogonadism treatment. In adult human testes, p75 neurotrophin receptor positive (p75+) cells expressed the known SLC marker nestin, but not the LC lineage marker hydroxysteroid dehydrogenase-3β (HSD3β). The p75+ cells which were sorted by flow cytometry from human adult testes could expand in vitro and exhibited clonogenic self-renewal capacity. The p75+ cells had multi-lineage differentiation potential into multiple mesodermal cell lineages and testosterone-producing LCs in vitro. After transplantation into the testes of ethane dimethane sulfonate (EDS)-treated LC-disrupted rat models, the p75+ cells differentiated into LCs in vivo and secreted testosterone in a physiological pattern. Moreover, p75+ cell transplantation accelerated the recovery of serum testosterone levels, spermatogenesis and reproductive organ weights. Taken together, we reported a method for the identification and isolation of human SLCs on the basis of p75 expression, and demonstrated that transplanted human p75+ SLCs could replace disrupted LCs for testosterone production. These findings provide the groundwork for further clinical application of human SLCs for hypogonadism.


Detection and Comparative Analysis of Methylomic Biomarkers of Rheumatoid Arthritis.

  • Xin Feng‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Rheumatoid arthritis (RA) is a common autoimmune disorder influenced by both genetic and environmental factors. To investigate possible contributions of DNA methylation to the etiology of RA with minimum confounding genetic heterogeneity, we investigated genome-wide DNA methylation in disease-discordant monozygotic twin pairs. This study hypothesized that methylomic biomarkers might facilitate accurate RA detection. A comprehensive series of biomarker detection algorithms were utilized to find the best methylomic biomarkers for detecting RA patients using the methylomic data of the peripheral blood samples. The best model achieved 100.00% in accuracy (Acc) with 81 methylomic biomarkers and a 10-fold cross-validation (10FCV) strategy. Some of the methylomic biomarkers were experimentally confirmed to be associated with the onset or development of RA. It is also interesting to observe that many of the detected biomarkers were from chromosome Y, supporting the knowledge that RA has a significant gender discrepancy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: