Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

  • Yingying Yao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.


Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model.

  • Yuan Xia‎ et al.
  • BMC genomics‎
  • 2017‎

This study is to explore the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme (GBM) patients.


Gclust: A Parallel Clustering Tool for Microbial Genomic Data.

  • Ruilin Li‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2019‎

The accelerating growth of the public microbial genomic data imposes substantial burden on the research community that uses such resources. Building databases for non-redundant reference sequences from massive microbial genomic data based on clustering analysis is essential. However, existing clustering algorithms perform poorly on long genomic sequences. In this article, we present Gclust, a parallel program for clustering complete or draft genomic sequences, where clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algorithm using sparse suffix arrays (SSAs). Moreover, genome identity measures between two sequences are calculated based on their maximal exact matches (MEMs). In this paper, we demonstrate the high speed and clustering quality of Gclust by examining four genome sequence datasets. Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust. We also introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust.


The Impact of Fintech Development on Air Pollution.

  • Yuzhen Ma‎ et al.
  • International journal of environmental research and public health‎
  • 2023‎

Over the past 40 years of reform and opening-up, China has achieved rapid economic and technological growth at the cost of severe air pollution. The emerging Fintech, as the result of financial institutions' adapting to the latest digital technology, might be a solution to reduce air pollution. This paper investigates the impact of Fintech development on air pollution using a two-factor fixed effects model based on data for prefecture-level cities in China from 2011 to 2017. The findings show that Fintech development can effectively reduce air pollution emissions, and this conclusion is proved to be robust throughout a series of tests. The mechanism analysis shows that Fintech reduces air pollution by promoting digital finance and green innovation.


LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway.

  • Huixing Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

The neonatal heart can efficiently regenerate within a short period after birth, whereas the adult mammalian heart has extremely limited capacity to regenerate. The molecular mechanisms underlying neonatal heart regeneration remain elusive. Here, we revealed that as a coreceptor of Wnt signalling, low-density lipoprotein receptor-related protein 5 (LRP5) is required for neonatal heart regeneration by regulating cardiomyocyte proliferation. The expression of LRP5 in the mouse heart gradually decreased after birth, consistent with the time window during which cardiomyocytes withdrew from the cell cycle. LRP5 downregulation reduced the proliferation of neonatal cardiomyocytes, while LRP5 overexpression promoted cardiomyocyte proliferation. The cardiac-specific deletion of Lrp5 disrupted myocardial regeneration after injury, exhibiting extensive fibrotic scars and cardiac dysfunction. Mechanistically, the decreased heart regeneration ability induced by LRP5 deficiency was mainly due to reduced cardiomyocyte proliferation. Further study identified AKT/P21 signalling as the key pathway accounting for the regulation of cardiomyocyte proliferation mediated by LRP5. LRP5 downregulation accelerated the degradation of AKT, leading to increased expression of the cyclin-dependent kinase inhibitor P21. Our study revealed that LRP5 is necessary for cardiomyocyte proliferation and neonatal heart regeneration, providing a potential strategy to repair myocardial injury.


Annulus Fibrosus Repair for Lumbar Disc Herniation: A Meta-Analysis of Clinical Outcomes From Controlled Studies.

  • Yangbin Wang‎ et al.
  • Global spine journal‎
  • 2024‎

Meta-analysis.


Selenium Biofortification Enhanced miR167a Expression in Broccoli Extracellular Vesicles Inducing Apoptosis in Human Pancreatic Cancer Cells by Targeting IRS1.

  • Xiaohui Wang‎ et al.
  • International journal of nanomedicine‎
  • 2023‎

Pancreatic adenocarcinoma (PAAD) presents an extremely high morbidity and mortality rate. Broccoli has excellent anti-cancer properties. However, the dosage and serious side effects still limit the application of broccoli and its derivatives for cancer therapy. Recently, extracellular vesicles (EVs) derived from plants are emerging as novel therapeutic agents. Thus, we conducted this study to determine the effectiveness of EVs isolated from Se-riched broccoli (Se-BDEVs) and conventional broccoli (cBDEVs) for the treatment of PAAD.


Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals.

  • Lingling Wang‎ et al.
  • PloS one‎
  • 2013‎

Chronic obstructive pulmonary disease (COPD) has seriously impacted the health of individuals and populations. In this study, proton nuclear magnetic resonance ((1)H NMR)-based metabonomics combined with multivariate pattern recognition analysis was applied to investigate the metabolic signatures of patients with COPD. Serum and urine samples were collected from COPD patients (n = 32) and healthy controls (n = 21), respectively. Samples were analyzed by high resolution (1)H NMR (600 MHz), and the obtained spectral profiles were then subjected to multivariate data analysis. Consistent metabolic differences have been found in serum as well as in urine samples from COPD patients and healthy controls. Compared to healthy controls, COPD patients displayed decreased lipoprotein and amino acids, including branched-chain amino acids (BCAAs), and increased glycerolphosphocholine in serum. Moreover, metabolic differences in urine were more significant than in serum. Decreased urinary 1-methylnicotinamide, creatinine and lactate have been discovered in COPD patients in comparison with healthy controls. Conversely, acetate, ketone bodies, carnosine, m-hydroxyphenylacetate, phenylacetyglycine, pyruvate and α-ketoglutarate exhibited enhanced expression levels in COPD patients relative to healthy subjects. Our results illustrate the potential application of NMR-based metabonomics in early diagnosis and understanding the mechanisms of COPD.


LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation.

  • Di Cheng‎ et al.
  • EBioMedicine‎
  • 2018‎

MicroRNA-122 (miR-122), a pivotal liver-specific miRNA, is frequently repressed in hepatocellular carcinoma (HCC) and associated with poor prognosis. Long non-coding RNA (lncRNA) HOTAIR has been proved to function as an oncogene in multiple cancers including HCC. However, the relationship between HOTAIR and miR-122 in HCC remains largely unknown.


Risk score model of autophagy-related genes in osteosarcoma.

  • Mingyang Jiang‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Osteosarcoma (OS) is a common pediatric malignancy with high mortality and disability rates. Autophagy is an essential process in regulating the apoptosis and invasion of tumor cells, so constructing a risk score model of OS autophagy-related genes (ARGs) will bring benefit to the evaluation of both treatment and prognosis.


MEK1/2 inhibitor inhibits neointima formation by activating miR-126-3p/ C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis.

  • Yali Yan‎ et al.
  • Bioengineered‎
  • 2022‎

Endothelial dysfunction is an initial and essential step in vascular-remodeling diseases, including atherosclerosis and neointima formation. During vascular remodeling, activated endothelial cells can release pro-inflammatory factors that promote phenotypic switching of vascular smooth muscle cells (VSMCs) to the proliferative phenotype. We previously reported that MEK1/2 inhibitor, U0126, has a protective effect on the development of atherosclerosis and vascular calcification. However, the effect of MEK1/2 inhibitors on neointimal formation and the underlying mechanism is not fully understood. We determined that MEK1/2 inhibitor reduced carotid artery ligation-induced neointimal formation, while increased collagen and elastin levels and vascular integrality. Mechanistically, MEK1/2 inhibitor or ERK1/2 siRNA increased miR-126-3p level in endothelial cells, thereby inhibiting expression of regular of G-protein signaling 16 (RGS16), a miR-126-3p target gene, to activate the C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) signaling pathway. Accordingly, miR-126-3p was also increased by U0126 in serum and carotid artery. RGS16 was inhibited while CXCR4 and CXCL12 was increased by U0126 in neointimal areas, especially in the endothelium. Moreover, similar results were observed in atherosclerotic plaques of high-fat diet-fed apolipoprotein E deficiency (apoE-/-) mice. In addition, vascular cell adhesion molecule 1 (VCAM-1), another miR-126-3p target gene, was reduced by U0126 in the neointimal areas, resulting reduced monocytes/macrophages accumulation. Taken together, our results indicate that MEK1/2 inhibitor can reduce neointima formation by activating endothelial miR-126-3p production to facilitate endothelium repair while reduce monocyte adhesion/infiltration.


Aloperine protects beta-cells against streptozocin-induced injury to attenuate diabetes by targeting NOS1.

  • Wenxi He‎ et al.
  • European journal of pharmacology‎
  • 2022‎

Type 1 diabetes (T1D) is a metabolic dysfunction characterized by the selective destruction of islet β-cells, with oxidative stress playing an essential role in the manifestation of this disease state. Aloperine (ALO) represents the main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroides L. and features outstanding antioxidative properties. In this study, T1D was induced by a single high dose streptozotocin (STZ, 150 mg/kg, intraperitoneal) in mice. Diabetic animals were intragastrically administered ALO at a dose of 50 mg/kg/day. Notably, treatment of ALO (50 mg/kg/day) for seven consecutive days could observably reverse the onset of diabetes induced by STZ accompanied by weight gain, lower blood glucose levels, and relief of β-cells damage. Our in vitro study further demonstrated that ALO protected β-cells from STZ/hydrogen peroxide-induced oxidative damage as manifested by increased expression of MnSOD and CAT. Furthermore, a network pharmacology study revealed that NOS1 represented the main target of ALO. Mechanistic studies subsequently showed that treatment of ALO increased the expression of NOS1, whereas NOS2 was decreased. Moreover, a docking study carried out suggested that ALO could fit into the binding pocket of human NOS1 and molecular dynamics simulation further validated this docking event. Collectively, the administration of ALO prior to diabetes could be a viable approach to the prevention of β-cell injury. This study may offer a novel potential herbal medicine against T1D and may further help improve the understanding of the underlying molecular mechanisms of ALO-mediated protection against oxidative stress.


Intermittent Fasting Inhibits High-Fat Diet-Induced Atherosclerosis by Ameliorating Hypercholesterolemia and Reducing Monocyte Chemoattraction.

  • Yuanli Chen‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Atherosclerosis is a major pathology for cardiovascular diseases (CVDs). Clinically, the intermittent fasting (IF) has been observed to reduce the risk of CVDs. However, the effect of IF on the development of atherosclerosis has not been fully elucidated. Herein, we determined the protection of IF against high-fat diet-induced atherosclerosis in pro-atherogenic low-density lipoprotein receptor deficient (LDLR-/-) mice and the potentially involved mechanisms. The LDLR-/- mice were scheduled intermittent fasting cycles of 3-day HFD feeding ad libitum and 1 day fasting, while the mice in the control group were continuously fed HFD. The treatment was lasted for 7 weeks (∼12 cycles) or 14 weeks (∼24 cycles). Associated with the reduced total HFD intake, IF substantially reduced lesions in the en face aorta and aortic root sinus. It also increased plaque stability by increasing the smooth muscle cell (SMC)/collagen content and fibrotic cap thickness while reducing macrophage accumulation and necrotic core areas. Mechanistically, IF reduced serum total and LDL cholesterol levels by inhibiting cholesterol synthesis in the liver. Meanwhile, HFD-induced hepatic lipid accumulation was attenuated by IF. Interestingly, circulating Ly6Chigh monocytes but not T cells and serum c-c motif chemokine ligand 2 levels were significantly reduced by IF. Functionally, adhesion of monocytes to the aortic endothelium was decreased by IF via inhibiting VCAM-1 and ICAM-1 expression. Taken together, our study indicates that IF reduces atherosclerosis in LDLR-/- mice by reducing monocyte chemoattraction/adhesion and ameliorating hypercholesterolemia and suggests its potential application for atherosclerosis treatment.


Comparison of Intra-Arterial Chemotherapy Efficacy Delivered Through the Ophthalmic Artery or External Carotid Artery in a Cohort of Retinoblastoma Patients.

  • Shichong Jia‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Purpose: To evaluate the efficacy of an external carotid artery (ECA) alternative route in intra-arterial chemotherapy (IAC) for treatment of retinoblastoma. Methods: In this retrospective, single-centre, case-control study, 98 retinoblastoma patients who received successful IAC were included. The drug delivery routes were the primary ophthalmic artery (OA) route and the ECA route when OA catheterization was not feasible. Results: A total of 337 successful IAC procedures were performed in our study, of which 32 (9.5%) procedures were performed through the ECA route. Eighteen eyes (18.4%) accepted at least one IAC through branches of the ECA. Statistical analysis showed that there was no significant difference in ocular clinical results (enucleation, death, recurrence and event-free) between the ECA and OA routes. No significant association was found between the route of drug delivery and the ocular survival time (p = 0.69). The use of ECA catheterization in at least one IAC cycle was not a predictor of enucleation (HR: 1.58; 95% CI: 0.56-4.46, p = 0.39). The increasing number of procedures through the ECA route did not increase the risk of enucleation (HR: 1.64; 95% CI: 0.42-6.39, p = 0.48). Conclusion: The ECA alternative route did not affect the efficacy of IAC in retinoblastoma. When the standard OA approach is not feasible, ECA system catheterization should be considered.


Osteoporosis treatment using stem cell-derived exosomes: a systematic review and meta-analysis of preclinical studies.

  • Xiaoyu He‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

The increasing incidence of osteoporosis in recent years has aroused widespread public concern; however, existing effective treatments are limited. Therefore, new osteoporosis treatment methods, including stem cell transplantation and exosome therapy, have been proposed and are gaining momentum. Exosomes are considered to have greater potential for clinical application owing to their immunocompatibility. This study summarises the latest evidence demonstrating the efficacy of exosomes in improving bone loss in the treatment of osteoporosis.


Prognostic visualization model for primary pulmonary sarcoma: a SEER-based study.

  • Qian Huang‎ et al.
  • Scientific reports‎
  • 2023‎

Primary pulmonary sarcoma (PPS) is a rare and poor prognostic malignancy that results from current clinical studies are lacking. Our study aimed to investigate the prognostic factors of PPS and to construct a predictive nomogram that predict the overall survival (OS) rate. We extracted data on patients diagnosed with PPS from 2010 to 2019 in the SEER database. A total of 169 patients were included after screening by inclusion and exclusion criteria. Univariate and multivariate COX regression analyses showed that age, pathological grade, liver metastasis, surgical intervention, and chemotherapy influenced the prognosis. We constructed the prediction model nomogram based on these factors. Moreover, the results of the internal and external ROC curves, calibration curves, and DCA plots confirmed that the model has good discrimination, accuracy, and clinical practice efficacy. The present study is the first population-based study to explore the factors affecting the prognosis of PPS. We established a novel prognostic nomogram to predict the OS rate, which can help to make proper clinical decisions.


Contemporary update of overall prognosis and nomogram to predict individualized survival for Chinese patients with eyelid sebaceous carcinoma.

  • Chuandi Zhou‎ et al.
  • EBioMedicine‎
  • 2018‎

The prognosis of Chinese patients with eyelid sebaceous carcinoma (SC) has not been updated for >3 decades. The prognostic predictors are multifactorial, and there is no validated prognostic model for eyelid SC.


KIF15 plays a role in promoting the tumorigenicity of melanoma.

  • Xiaoyu Yu‎ et al.
  • Experimental eye research‎
  • 2019‎

Kinesins are a superfamily of motor proteins and are often dysregulated in many cancers. KIF15, which belongs to the kinesin-12 family, has been shown to function in many different cellular processes, including proliferation, apoptosis, differentiation and development. However, the role of KIF15 in melanoma, remains unknown. In this study, the expression levels of KIF15 in melanoma cells lines and tissues were determined via real-time PCR, immunohistochemical staining and western blot. The effect of KIF15 on tumorigenesis was evaluated by using MTT and colony information. The function of KIF15 on cell survival was detected through flow cytometry assay. Microarray assay and bioinformatics analysis were used to find the potential target of KIF15. We show that KIF15 was significantly upregulated in melanoma cells and tissues. The suppression of KIF15 in tumors significantly reduced tumor growth and increased apoptosis in A375 and OCM1 cells. Findings based on the subcutaneous xenograft model were further consistent with the in vitro results that KIF15 knockdown inhibited melanoma tumor growth in vivo. Microarray assay and bioinformatics indicated that BIRC5, CDK4 and WNT5A were three potential targets of KIF15. Taken together, our results suggest that KIF15 plays a positive role in the tumorigenicity of melanoma and it may serve as a novel diagnostic and therapeutic target for melanoma, especially uveal melanoma.


Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma.

  • Jie Yang‎ et al.
  • Cell death & disease‎
  • 2021‎

Retinoblastoma is a childhood retinal tumour that is the most common primary malignant intraocular tumour. However, it has been challenging to identify the cell types associated with genetic complexity. Here, we performed single-cell RNA sequencing on 14,739 cells from two retinoblastoma samples to delineate the heterogeneity and the underlying mechanism of retinoblastoma progression. Using a multiresolution network-based analysis, we identified two major cell types in human retinoblastoma. Cell trajectory analysis yielded a total of 5 cell states organized into two main branches, and the cell cycle-associated cone precursors were the cells of origin of retinoblastoma that were required for initiating the differentiation and malignancy process of retinoblastoma. Tumour cells differentiation reprogramming trajectory analysis revealed that cell-type components of multiple tumour-related pathways and predominantly expressed UBE2C were associated with an activation state in the malignant progression of the tumour, providing a potential novel "switch gene" marker during early critical stages in human retinoblastoma development. Thus, our findings improve our current understanding of the mechanism of retinoblastoma progression and are potentially valuable in providing novel prognostic markers for retinoblastoma.


MSIsensor-ct: microsatellite instability detection using cfDNA sequencing data.

  • Xinyin Han‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor tissues are often insufficient, unavailable, or otherwise difficult to procure. Increasing clinical evidence indicates the enormous potential of plasma circulating cell-free DNA (cfNDA) technology as a noninvasive MSI detection approach.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: