Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 181 papers

Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

  • Ignazio Maggio‎ et al.
  • Nucleic acids research‎
  • 2016‎

Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles.


Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo.

  • Tao Hu‎ et al.
  • Oncology reports‎
  • 2016‎

Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination.


Heterodimerization of human orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element binding protein signaling via a Gαs-mediated mechanism.

  • Jing Chen‎ et al.
  • Cellular signalling‎
  • 2015‎

Orexin and dynorphin are co-expressed in the same synaptic vesicles of hypothalamic neurons and play opposing roles in cocaine self-administration, brain stimulation reward, and impulsivity in ventral tegmental area (VTA), where dopamine neurons express both OX1R and KORs. However, detailed mechanisms of how the coreleased peptides and both receptors fine-tune their signalings and physiological/behavioral effects together remain unclear. Here we explore the possibility of heterodimerization between OX1R and KOR and reveal novel signal transduction mechanisms. First, we demonstrated co-expression of OX1R and KOR in rat hippocampal neurons by single-cell PCR. Furthermore, heterodimerization between OX1R and KOR was examined using bioluminescence and fluorescence resonance energy transfer (BRET and FRET). Our data revealed that human OX1R and KOR heterodimerize, and this heterodimer associates with Gαs, leading to increased protein kinase A (PKA) signaling pathway activity, including upregulation of intracellular cAMP levels and cAMP-response element (CRE) luciferase reporter activity, resulting in increased cAMP-response element binding protein (CREB) phosphorylation. These results support the view that OX1R and KOR heterodimerization might have an anti-depressive role.


Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells.

  • Ignazio Maggio‎ et al.
  • Scientific reports‎
  • 2014‎

CRISPR/Cas9-derived RNA-guided nucleases (RGNs) are DNA targeting systems, which are rapidly being harnessed for gene regulation and gene editing purposes in model organisms and cell lines. As bona fide gene delivery vehicles, viral vectors may be particularly fit to broaden the applicability of RGNs to other cell types including dividing and quiescent primary cells. Here, the suitability of adenoviral vectors (AdVs) for delivering RGN components into various cell types is investigated. We demonstrate that AdVs, namely second-generation fiber-modified AdVs encoding Cas9 or single guide RNA (gRNA) molecules addressing the Cas9 nuclease to the AAVS1 "safe harbor" locus or to a recombinant model allele can be produced to high-titers (up to 20 × 10(10) transducing units/ml). Importantly, AdV-mediated transduction of gRNA:Cas9 ribonucleoprotein complexes into transformed and non-transformed cells yields rates of targeted mutagenesis similar to or approaching those achieved by isogenic AdVs encoding TALENs targeting the same AAVS1 chromosomal region. RGN-induced gene disruption frequencies in the various cell types ranged from 18% to 65%. We conclude that AdVs constitute a valuable platform for introducing RGNs into human somatic cells regardless of their transformation status. This approach should aid investigating the potential and limitations of RGNs in numerous experimental settings.


Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression.

  • Jing Zhang‎ et al.
  • Molecular cancer‎
  • 2017‎

Non-coding RNAs (ncRNAs) have been shown to regulate gene expression involved in tumor progression of multiple malignancies. Our previous studies indicated that large tumor suppressor kinase 1 (LATS1), a core part of Hippo signaling pathway, functions as a tumor suppressor in gastric cancer (GC). But, the underlying molecular mechanisms by which ncRNAs modulate LATS1 expression in GC remain undetermined.


Astilbin from Smilax glabra Roxb. Attenuates Inflammatory Responses in Complete Freund's Adjuvant-Induced Arthritis Rats.

  • Lisha Dong‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Astilbin, a flavonoid compound, was isolated from the rhizome of Smilax glabra Roxb. (with red cross-section) grown in Guizhou Province, China. We accessed its effect and potential mechanism on attenuation of the inflammatory response in CFA-induced AA rats. Our results showed that daily oral administration of astilbin at 5.3 mg/kg reduced joint damage in the hind paw of AA rats. Accordingly, astilbin exhibited remarkable inhibitory effects on TNF-α, IL-1β, and IL-6 mRNA expression. Significant decrease of serum cytokine levels of TNF-α, IL-1β, and IL-6 was also observed in astilbin-treated AA rats compared to the vehicle-treated AA rats. The reduced expression of these cytokines was associated with protein activity suppression of three key molecular targets in the pathogenesis of RA, including IKKβ, NF-κB p65 subunit, and TLR adaptor MyD88. Furthermore, the therapeutic effects of astilbin on the inhibition of cytokines production as well as the reduction of inflammatory response in AA rats are close to a commonly used antirheumatic drug, leflunomide. Collectively, our data suggest that the action mechanism of astilbin, as an anti-inflammatory agent for RA treatment, is associated with modulating the production of proinflammatory cytokines and inhibiting the expression of key elements in NF-κB signaling pathway mediated by TLR.


Treatment of a chemoresistant neuroblastoma cell line with the antimalarial ozonide OZ513.

  • Don W Coulter‎ et al.
  • BMC cancer‎
  • 2016‎

Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c.


Distribution of malaria patients seeking care in different types of health facilities during the implementation of National Malaria Elimination Programme.

  • Gang Li‎ et al.
  • Malaria journal‎
  • 2020‎

China launched the National Malaria Elimination Programme (NMEP) in 2010 and set the goal that all health facilities should be able to diagnose malaria. Additionally, hospitals at all levels could treat malaria by 2015. To provide a reference for the control of imported malaria, a study was conducted on the distribution of malaria patients seeking care in different types of health facilities.


DEPTOR is a direct p53 target that suppresses cell growth and chemosensitivity.

  • Danrui Cui‎ et al.
  • Cell death & disease‎
  • 2020‎

DEP-domain containing mTOR-interacting protein (DEPTOR), a natural mTOR inhibitor, has essential roles in several processes, including cell growth, metabolism, apoptosis, and immunity. DEPTOR expression has been shown to be diversely controlled at transcriptional levels in cell- and context-specific manners. However, whether there is a general mechanism for the regulation of DEPTOR expression remains largely unknown. Here, we report that DEPTOR is a downstream target of the tumor suppressor, p53, whose activity is positively correlated with DEPTOR expression both in vitro in cell cultures and in vivo in mouse tissues. Mechanistically, p53 directly binds to the DEPTOR promoter and transactivates its expression. Depletion of the p53-binding site on the DEPTOR promoter by CRISPR-Cas9 technology decreases DEPTOR expression and promotes cell proliferation and survival by activating AKT signaling. Importantly, inhibition of AKT by small molecular inhibitors or genetic knockdown abrogates the induction of cell growth and survival induced by deletion of the p53-binding region on the DEPTOR promoter. Furthermore, p53, upon activation by the genotoxic agent doxorubicin, induces DEPTOR expression, leading to cancer cell resistance to doxorubicin. Together, DEPTOR is a direct p53 downstream target and contributes to p53-mediated inhibition of cell proliferation, survival, and chemosensitivity.


Cannabidiol Induces Cell Cycle Arrest and Cell Apoptosis in Human Gastric Cancer SGC-7901 Cells.

  • Xin Zhang‎ et al.
  • Biomolecules‎
  • 2019‎

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0-G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0-G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


Triterpenoid Saponin and Lignan Glycosides from the Traditional Medicine Elaeagnus angustifolia Flowers and Their Cytotoxic Activities.

  • Jianxin Han‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A new triterpenoid saponin, named terpengustifol A (1), and two new lignan glucosides, phengustifols A and B (2 and 3), were isolated from the flowers of Elaeagnus angustifolia. Their structures were determined by the extensive analysis of the spectroscopic data (including NMR and HRMS) and ECD calculations. Compound 1 possesses an unusual monoterpene (Z)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl unit at C-21. Compounds 2 and 3 are a pair of diastereoisomers, while their aglycones are a pair of enantiomers. Compounds 1 and 2 exhibited moderate cytotoxic activities against A375 cell lines with IC50 values at 12.1 and 15.6 μM, respectively. This is firstly reported the triterpenoid saponin and lignans isolated from the Elaeagnus angustifolia flowers.


Exercise Reverses Dysregulation of T-Cell-Related Function in Blood Leukocytes of Patients With Parkinson's Disease.

  • Yong Hu‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Parkinson's disease (PD) is a common neurodegenerative disease with movement and balance impairments. Although studies have reported improvement of motor symptoms with physical exercise, the mechanisms by which exercise is beneficial remains poorly understood. Our study addresses the exercise-induced changes to peripheral immune cells by interrogating the transcriptome of blood-derived leukocytes in PD patients before and after exercise. Patients attended 1 h exercise classes twice a week for 12 weeks. Leukocytes were collected at the beginning and end of the study for gene expression analysis by RNA-seq or quantitative real-time PCR. We correlated differentially expressed genes after exercise with clinical measures and analyzed the potential functions of gene changes with Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analysis. Exercise improved measures of movement and balance when compared with scores before the exercise program. Among the gene changes, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis suggests that T-cell receptor signaling, T-cell activation, and T-cell migration pathways were downregulated, while the T-cell receptor signaling pathway was the most significantly correlated with clinical measures. To further investigate T-cell-related changes in PD leukocytes, we reanalyzed the differentially expressed genes from publicly available microarray data and found that genes in the T-cell activation, differentiation, and migration pathways were upregulated in PD samples compared to controls in a time-dependent manner. Together, our findings suggest that exercise rehabilitation may improve movement and balance in PD patients by reversing the upregulated T-cell activation pathways associated with PD. This study was registered with the Chinese Clinical Trial Registry under ChiCTR-TRC-14004707. Registered on May 27, 2014.


Regulatory coupling between long noncoding RNAs and senescence in irradiated microglia.

  • Anan Xu‎ et al.
  • Journal of neuroinflammation‎
  • 2020‎

Microglia have been implicated in the pathogenesis of radiation-induced brain injury (RIBI), which severely influences the quality of life during long-term survival. Recently, irradiated microglia were speculated to present an aging-like phenotype. Long noncoding RNAs (lncRNAs) have been recognized to regulate a wide spectrum of biological processes, including senescence; however, their potential role in irradiated microglia remains largely uncharacterized.


DEPTOR inhibits lung tumorigenesis by inactivating the EGFR-mTOR signals.

  • Longyuan Gong‎ et al.
  • Cancer letters‎
  • 2021‎

DEPTOR plays vital roles in the regulation of cell proliferation and survival by directly modulating the activity of mTORC1/2. However, the physiological role of DEPTOR in lung tumorigenesis, as well as its clinical significance, remains elusive. In this study, we revealed that decreased DEPTOR expression correlated with increased tumor size, poor differentiation, and worse survival in patients with lung cancer. DEPTOR depletion promoted cell proliferation, survival, migration, and invasion in human lung cancer cells. Mechanistically, DEPTOR bound to the kinase domain of EGFR via its PDZ domain to inactivate EGFR signal. Thus, DEPTOR depletion not only directly activated mTORC1/2, but also relieved the inhibition of EGFR to subsequently activate mTOR signals, leading to the induction of cell proliferation and survival. Additionally, activated EGFR-mTOR signals upregulated the expression of ZEB1 and SLUG to induce epithelial-mesenchymal transition, resulting in enhanced migration and invasion. Importantly, Deptor deletion accelerated KrasG12D;p53fl/fl-induced lung tumorigenesis and shortened mouse life span via the activation of EGFR-mTOR signals. Collectively, our study demonstrated that DEPTOR acts as a tumor suppressor in lung tumorigenesis, and its reduction may advance the progression of human lung cancer.


Emotional Intelligence and Creative Self-Efficacy among Gifted Children: Mediating Effect of Self-Esteem and Moderating Effect of Gender.

  • Xiaoyu Chen‎ et al.
  • Journal of Intelligence‎
  • 2023‎

Creative self-efficacy is a type of individual creative self-belief, which is an important predictor of creative activities and achievements. For gifted children who have high creative potential, the influencing factors of their creative self-efficacy need to be further explored. This study aimed to explore the relationship between gender, emotional intelligence, self-esteem, and creative self-efficacy in gifted children, with special attention on the mediating role of self-esteem and the moderating role of gender in the relationship between emotional intelligence and creative self-efficacy. Participants in this study included 226 gifted students aged 10-13 (135 boys and 91 girls) from experimental classrooms designed for gifted students in North China. The creative self-efficacy scale (CSE), the emotional intelligence scale (EIS), and the self-esteem scale (SES) were tested. The statistical results indicate that: (1) emotional intelligence significantly positively predicted creative self-efficacy in gifted children; (2) self-esteem partially mediated the link between emotional intelligence and creative self-efficacy; and (3) gender acted as a moderator for the mediation model, in which self-esteem played a complete mediating role in gifted boys, while the mediating role of self-esteem in gifted girls was not significant. The results of this study reveal the influential mechanism of creative self-efficacy in gifted children of different genders and may provide further implications for promoting the creative potential of gifted children.


Machine learning prediction of methionine and tryptophan photooxidation susceptibility.

  • Jared A Delmar‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Photooxidation of methionine (Met) and tryptophan (Trp) residues is common and includes major degradation pathways that often pose a serious threat to the success of therapeutic proteins. Oxidation impacts all steps of protein production, manufacturing, and shelf life. Prediction of oxidation liability as early as possible in development is important because many more candidate drugs are discovered than can be tested experimentally. Undetected oxidation liabilities necessitate expensive and time-consuming remediation strategies in development and may lead to good drugs reaching patients slowly. Conversely, sites mischaracterized as oxidation liabilities could result in overengineering and lead to good drugs never reaching patients. To our knowledge, no predictive model for photooxidation of Met or Trp is currently available. We applied the random forest machine learning algorithm to in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) datasets (Met, n = 421; Trp, n = 342) of tryptic therapeutic protein peptides to create computational models for Met and Trp photooxidation. We show that our machine learning models predict Met and Trp photooxidation likelihood with 0.926 and 0.860 area under the curve (AUC), respectively, and Met photooxidation rate with a correlation coefficient (Q2) of 0.511 and root-mean-square error (RMSE) of 10.9%. We further identify important physical, chemical, and formulation parameters that influence photooxidation. Improvement of biopharmaceutical liability predictions will result in better, more stable drugs, increasing development throughput, product quality, and likelihood of clinical success.


Systematic Analysis of tRNA-Derived Small RNAs Discloses New Therapeutic Targets of Caloric Restriction in Myocardial Ischemic Rats.

  • Wenjing Liu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Caloric restriction (CR) is a novel dietary therapy that has a protective effect on myocardial ischemia. However, the mechanisms underlying the therapeutic effect of CR remain unclear. Transfer RNA-derived small RNAs (tsRNAs) are a novel type of short non-coding RNAs that have potential regulatory functions in various physiological and pathological processes. In this study, we explored new therapeutic targets of CR through tsRNA sequencing. Rats were randomly divided into three groups: a normal control group (norm group), isoproterenol (ISO)-induced myocardial ischemic group (MI group), and CR pretreatment plus ISO-induced myocardial ischemic group (CR + MI group). Triphenyl tetrazolium chloride staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, serum creatine kinase (CK) and lactic acid dehydrogenase activity detection kits, and creatine kinase isoenzyme 1 levels were used to measure the degree of myocardial ischemic injury. These indicators of myocardial ischemia were significantly improved in the CR + MI group compared with those in the MI group. In the ischemic myocardial tissue of the MI group, a total of 708 precisely matched tsRNAs were identified, and 302 tsRNAs (fold change >1.5, P < 0.05) were significantly changed when compared with those in the norm group. Furthermore, 55 tsRNAs were significantly regulated by CR pretreatment, among which five tsRNAs (tiRNA-His-GTG-004, tRF-Gly-TCC-018, tRF-Cys-GCA-022, tRF-Lys-CTT-026, tRF-Met-CAT-008) were randomly selected and verified by quantitative real-time polymerase chain reaction. In addition, predictions of target genes and bioinformatics analysis indicated that these tsRNAs may play a therapeutic role through the regulation of macromolecular metabolism. In conclusion, our findings reveal that tsRNAs are potential therapeutic targets for CR pre-pretreatment to improve myocardial ischemic injury. This study provides new ideas for future research on elucidating the mechanisms of CR pretreatment in ameliorating myocardial ischemic injury.


A graph representation of functional diversity of brain regions.

  • Dazhi Yin‎ et al.
  • Brain and behavior‎
  • 2019‎

Modern network science techniques are popularly used to characterize the functional organization of the brain. A major challenge in network neuroscience is to understand how functional characteristics and topological architecture are related in the brain. Previous task-based functional neuroimaging studies have uncovered a core set of brain regions (e.g., frontal and parietal) supporting diverse cognitive tasks. However, the graph representation of functional diversity of brain regions remains to be understood.


Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography.

  • Mingchao Yan‎ et al.
  • eLife‎
  • 2022‎

Resolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here, we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic, and subcortical areas, relatively weak projections to parietal and insular regions but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative green fluorescent protein-labeled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits.


Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis.

  • Hongyuan Zhao‎ et al.
  • Pharmacological research‎
  • 2022‎

Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1β, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: