Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy.

  • Xingyou Dong‎ et al.
  • Scientific reports‎
  • 2016‎

A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP.


Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis.

  • Jiang Zhao‎ et al.
  • Scientific reports‎
  • 2016‎

Zinc is an essential trace mineral for the normal functioning of the male reproductive system. Current studies have investigated the relationship between seminal plasma zinc and male infertility but have shown inconsistent results. Hence, we systematically searched PubMed, EMBASE, Science Direct/Elsevier, CNKI and the Cochrane Library for studies that examined the relationship between seminal plasma zinc and male infertility, as well as the effects of zinc supplementation on sperm parameters. Twenty studies were identified, including 2,600 cases and 867 controls. Our meta-analysis results indicated that the seminal plasma zinc concentrations from infertile males were significantly lower than those from normal controls (SMD (standard mean differences) [95% CI] -0.64 [-1.01, -0.28]). Zinc supplementation was found to significantly increase the semen volume, sperm motility and the percentage of normal sperm morphology (SMD [95% CI]: -0.99 [-1.60, -0.38], -1.82 [-2.63, -1.01], and -0.75 [-1.37, -0.14], respectively). The present study showed that the zinc level in the seminal plasma of infertile males was significantly lower than that of normal males. Zinc supplementation could significantly increase the sperm quality of infertile males. However, further studies are needed to better elucidate the correlation between seminal plasma zinc and male infertility.


Nimotuzumab enhances radiation sensitivity of NSCLC H292 cells in vitro by blocking epidermal growth factor receptor nuclear translocation and inhibiting radiation-induced DNA damage repair.

  • Kai Teng‎ et al.
  • OncoTargets and therapy‎
  • 2015‎

The epidermal growth factor receptor (EGFR) signaling pathway plays a significant role in radiation resistance. There is evidence that EGFR nuclear translocation is associated with DNA double-strand breaks (DSB) repair. Nimotuzumab has shown the effect of radiosensitization in various cancer cells, but little is known about the relationship between nimotuzumab and EGFR nuclear translocation in non-small cell lung cancer (NSCLC) cell lines. In this study, we selected two NSCLC cell lines, namely, H292 (with high EGFR expression) and H1975 (with low EGFR expression) and explored the mechanisms underlying radiation sensitivity.


Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3.

  • Xiaoyan Hu‎ et al.
  • Cell death & disease‎
  • 2019‎

CRL4, a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in ovarian cancers. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. Here, we show that CRL4 is considerably increased in cisplatin-resistant ovarian cancer cells, and CRL4 knockdown with shRNAs is able to reverse cisplatin-resistance of ovarian cancer cells. Moreover, CRL4 knockdown markedly inhibits the expression of BIRC3, one of the inhibitors of apoptosis proteins (IAPs). Besides, lower expression level of BIRC3 is associated with better prognosis of ovarian cancer patients, and BIRC3 knockdown in ovarian cancer cells can recover their sensitivity to cisplatin. More importantly, we demonstrate that CRL4 regulates BIRC3 expression by mediating the STAT3, but not the PI3K pathway. Therefore, our results identified CRL4 as an important factor in ovarian cancer chemoresistance, suggesting that CRL4 and BIRC3 may serve as novel therapeutic targets for relapsed patients after treatment with cisplatin and its derivative to overcome the bottle neck of ovarian cancer chemoresistance.


An acid-stable β-glucosidase from Aspergillus aculeatus: Gene expression, biochemical characterization and molecular dynamics simulation.

  • Yu Li‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

β-Glucosidases hydrolyze terminal, non-reducing β-d-glucosyl residues and thereby release β-d-glucose. They have applications in the production of biofuels, beverages and pharmaceuticals. In this study, a β-glucosidase derived from Aspergillus aculeatus (BGLA) was expressed, characterized, and the molecular mechanism of its acid denaturation was comprehensively probed. BGLA exhibited maximal activity at pH 5.0-6.0. Its optimal temperature was 70 °C. Its enzyme activity was enhanced by Mg2+, Ca2+ and Ba2+, while Cu2+, Mn2+, Zn2+, Fe2+ and Fe3+ had a negative effect. BGLA showed activity on a broad range of substrates including salicin, cellobiose, arbutin, geniposide and polydatin. Finally, the acid-denaturation mechanism of BGLA was probed using molecular dynamics (MD) simulations. The results of simulation at pH 2.0 imply that the contact number, solvent accessible surface area and number of hydrogen bonds in BGLA decreased greatly. Moreover, the distance between the residues Asp280 and Glu509 that are part of the active site increased, which eventually destroyed the enzyme's catalytic activity. These MD results explain the molecular mechanism of acid denaturation of BGLA, which will greatly benefit the rational design of more acid-stable β-glucosidase variants in the future.


A novel hypothermic machine perfusion system using a LifePort Kidney Transporter for the preservation of rat liver.

  • Cheng Zeng‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

The protective mechanisms for liver preservation associated with hypothermic machine perfusion (HMP) remain unclear. However, the lack of a common and portable HMP system for rat livers limits the study of HMP. The present study aimed to develop a novel, modified HMP system using a LifePort Kidney Transporter for preserving rat livers. A simple 'Y' shunt combined with a pressoreceptor for flow and pressure regulation was adapted to perfuse rat livers via the portal vein continuously using a LifePort Kidney Transporter under its 'prime mode' setting. An electronic scale was installed under the liver container to calculate the portal inflow according to the association with weight, density and volume of the perfusate. A total of 10 rat livers underwent 6 h of HMP using histidine-tryptophan-ketoglutarate solution enriched with acridine orange (AO) and propidium iodide (PI). The perfusion status of HMP was assessed by comparison of AO+PI-positive cell count in core region (CR) and peripheral region (PR) of rat liver under fluorescence microscopy. The dynamics (inflow, pressure and intrahepatic resistance of perfusion) were assessed to identify whether this system met the demands for HMP of rat livers. Biochemical [alanine transaminase (ALT), lactate dehydrogenase (LDH) and endothelin levels] and histological parameters (sinusoidal dilatation, endothelial cell detachment and vacuolization) were measured to determine cellular damage associated with HMP. No significant difference was observed between the CR and PR according to the comparison of the AO+PI-positive cell count, which indicated that complete perfusion was achieved. Intrahepatic resistance significantly decreased during the initial 3 h of HMP (P<0.01), but remained stable during the final 3 h. ALT and LDH levels significantly increased over the 6 h HMP duration: ALT (0 h, 42.67±5.81 U/l; 3 h, 90.67±6.74 U/l; 6 h, 164.33±7.31 U/l; P<0.01) and LDH (0 h, 492.90±90.20 U/l; 3 h, 973.53±97.4; 6 h, 1,843.40±85.78 U/l; P<0.01) However, the levels of endothelin and oxygen consumption were constant throughout HMP. Furthermore, histological analysis indicated sinusoidal dilation was significantly increased in the post-HMP group compared with the pre-HMP group (P<0.01); however, no other significant differences were observed. Combined with the results of ATP test (640.64±29.46 nmol/l) and bile production (4.88±0.69 µl/h/g of liver) at the end of HMP, the present results demonstrated minimal cellular injury associated with HMP while retaining the dependability and portability of the LifePort Kidney Transporter, which suggests the modified HMP system met the demands required and may be suitable for rat liver preservation.


Decreased hyperpolarization-activated cyclic nucleotide-gated channels are involved in bladder dysfunction associated with spinal cord injury.

  • Qian Liu‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Spinal cord injury (SCI) leads to bereft voluntary control of bladder, but the possible role of spontaneous excited system in bladder of SCI patients is poorly understood. Hyper-polarization-activated cyclic nucleotide-gated (HCN) channels are deemed to regulate the spontaneous contraction of bladder, our study explored the functional role of HCN channels in SCI induced neurogenic bladder. Sixty female Sprague-Dawley rats were randomized into control, sham and SCI groups. Rat models subjected to SCI at S2 levels were successfully established and were assessed using hematoxylin and eosin staining and cystometry. In SCI rats, the mRNA and protein expression levels of HCN channels and the Ih density were significantly reduced, and expression levels of several bladder HCN1 channel regulatory proteins were also significantly changed. The effects of 50 µM forskolin and 50 µM 8-bromoadenosine 3',5'-cyclic monophosphate on [Ca2+]i of isolated bladder interstitial cells of Cajal-like cells were significantly decreased in SCI rats. The spontaneous contractions in detrusor strips from SCI rats were significantly weakened. Furthermore, detrusor strips from SCI rats exhibited decreased tolerance to two doses of ZD7288 (10 and 50 µM). Taken together, our results indicate that the decreased bladder HCN channel expression and function induced by altered regulatory proteins are involved in the pathological process of SCI induced neurogenic bladder, which present HCN channels as valid therapeutic targets for treating this disease.


Targeting PRMT5/Akt signalling axis prevents human lung cancer cell growth.

  • Shikui Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

The emerging evidence reveals that protein arginine methyltransferase 5 (PRMT5) is involved in regulation of tumour cell proliferation and cancer development. Nevertheless, the exact role of PRMT5 in human lung cancer cell proliferation and the underlying molecular mechanism remains largely obscure. Here, we showed that PRMT5 was highly expressed in human lung cancer cells and lung cancer tissues. Furthermore, we generated PRMT5 stable knockdown cell lines (A549 and H1299 cells) and explored the functions of PRMT5 in lung cancer cell proliferation. We found that the down-regulation of PRMT5 by shRNA or the inhibition of PRMT5 by specific inhibitor GSK591 dramatically suppressed cyclin E1 and cyclin D1 expression and cell proliferation. Moreover, we uncovered that PRMT5 promoted lung cancer cell proliferation via regulation of Akt activation. PRMT5 was directly co-localized and interacted with Akt, but not PTEN and mTOR. Down-regulation or inhibition of PRMT5 markedly reduced Akt phosphorylation at Thr308 and Ser473, whereas the expression of PTEN and mTOR phosphorylation was unchanged, indicating that PRMT5 was an important upstream regulator of Akt and induced lung cancer cell proliferation. Altogether, our results indicate that PRMT5 promotes human lung cancer cell proliferation through direct interaction with Akt and regulation of Akt activity. Our findings also suggest that targeting PRMT5 may have therapeutic potential for treatment of human lung cancer.


Five extracellular matrix-associated genes upregulated in oral tongue squamous cell carcinoma: An integrated bioinformatics analysis.

  • Pingping Zhong‎ et al.
  • Oncology letters‎
  • 2019‎

Despite advancements in treatment regimens, the mortality rate of patients with oral tongue squamous cell carcinoma (OTSCC) is high. In addition, the signaling pathways and oncoproteins involved in OTSCC progression remain largely unknown. Therefore, the aim of the present study was to identify specific prognostic marker for patients at a high risk of developing OTSCC. The present study used four original microarray datasets to identify the key candidate genes involved in OTSCC pathogenesis. Expression profiles of 93 OTSCC tissues and 76 normal tissues from GSE9844, GSE13601, GSE31056 and GSE75538 datasets were investigated. Differentially expressed genes (DEGs) were determined, and gene ontology enrichment and gene interactions were analyzed. The four GSE datasets reported five upregulated and six downregulated DEGs. Five upregulated genes (matrix metalloproteinase 1, 3, 10 and 12 and laminin subunit gamma 2) were localized in the extracellular region of cells and were associated with extracellular matrix disassembly. Furthermore, analysis for The Cancer Genome Atlas database revealed that the aforementioned five upregulated genes were also highly expressed in OTSCC and head and neck squamous cell carcinoma tissues. These results demonstrated that the five upregulated genes may be considered as potential prognostic biomarkers of OTSCC and may serve at understanding OTSCC progression. Upregulated DEGs may therefore represent valuable therapeutic targets to prevent or control OTSCC pathogenesis.


Decellularized liver as a translucent ex vivo model for vascular embolization evaluation.

  • Yanan Gao‎ et al.
  • Biomaterials‎
  • 2020‎

Transarterial chemoembolization (TACE) is the preferred treatment for patients with unresectable intermediate stage hepatocellular carcinoma, however currently the development of embolic agents for TACE lacks in vitro models that closely represent the sophisticated features of the organ and the vascular systems therein. In this study, we presented a new strategy using an ex vivo liver model to provide a translucent template for evaluating embolic agents of TACE. The ex vivo liver model was developed through decellularizion of rat liver organs with preserved liver-specific vasculatures and improved transmittance of the whole liver up to 23% at 550 nm. Using this model, we investigated the embolization performances of both liquid and particle-based embolic agents, including penetration depth, embolization end-points, injection pressure and spatial distribution dynamics. We found that the embolization endpoint of liquid embolic agent such as ethiodised oil was strongly dependent on the injection pressure, and the pressure quickly built up when reaching the capillary endings, which could cause embolic agent leaking and potential tissue damages. In contrast, for particle-based embolic agents such as poly-dl-lactide microparticles and CalliSpheres® beads, their embolization endpoints were mainly determined by the particle size, whereas the particle densities close to the endpoints dramatically dropped down, which with the penetration depth represented two critical factors determining the embolic distribution. Such a decellularized organ model may open a new route to visually and quantitatively characterize embolization effects of various embolotherapies.


Chk1 Inhibition Potently Blocks STAT3 Tyrosine705 Phosphorylation, DNA-Binding Activity, and Activation of Downstream Targets in Human Multiple Myeloma Cells.

  • Liang Zhou‎ et al.
  • Molecular cancer research : MCR‎
  • 2022‎

The relationship between the checkpoint kinase Chk1 and the STAT3 pathway was examined in multiple myeloma cells. Gene expression profiling of U266 cells exposed to low (nmol/L) Chk1 inhibitor [PF-477736 (PF)] concentrations revealed STAT3 pathway-related gene downregulation (e.g., BCL-XL, MCL-1, c-Myc), findings confirmed by RT-PCR. This was associated with marked inhibition of STAT3 Tyr705 (but not Ser727) phosphorylation, dimerization, nuclear localization, DNA binding, STAT3 promoter activity by chromatin immunoprecipitation assay, and downregulation of STAT-3-dependent proteins. Similar findings were obtained in other multiple myeloma cells and with alternative Chk1 inhibitors (e.g., prexasertib, CEP3891). While PF did not reduce GP130 expression or modify SOCS or PRL-3 phosphorylation, the phosphatase inhibitor pervanadate antagonized PF-mediated Tyr705 dephosphorylation. Significantly, PF attenuated Chk1-mediated STAT3 phosphorylation in in vitro assays. Surface plasmon resonance analysis suggested Chk1/STAT3 interactions and PF reduced Chk1/STAT3 co-immunoprecipitation. Chk1 CRISPR knockout or short hairpin RNA knockdown cells also displayed STAT3 inactivation and STAT3-dependent protein downregulation. Constitutively active STAT3 diminished PF-mediated STAT3 inactivation and downregulate STAT3-dependent proteins while significantly reducing PF-induced DNA damage (γH2A.X formation) and apoptosis. Exposure of cells with low basal phospho-STAT3 expression to IL6 or human stromal cell conditioned medium activated STAT3, an event attenuated by Chk1 inhibitors. PF also inactivated STAT3 in primary human CD138+ multiple myeloma cells and tumors extracted from an NSG multiple myeloma xenograft model while inhibiting tumor growth.


Mechanisms underlying synergism between circularized tumor necrosis factor-related apoptosis inducing ligand and bortezomib in bortezomib-sensitive or -resistant myeloma cells.

  • Yun Leng‎ et al.
  • Hematological oncology‎
  • 2022‎

Mechanisms underlying interactions between a novel, clinically relevant circularized tumor necrosis factor-related apoptosis inducing ligand (TRAIL) agonist, circularly permuted TRAIL (CPT) have been examined in multiple myeloma (MM) cells sensitive or resistant to bortezomib (BTZ). Various MM cell lines for example, U266, including those resistant to bortezomib-resistant U266 cells were exposed to low nanomolar concentrations of bortezomib ± CPT and apoptosis monitored. Circularly permuted TRAIL and bortezomib synergistically induced apoptosis in both BTZ-naïve and -resistant cells. The regimen up-regulated DR4 receptor internalization in MM cells, known to modulate both NF-κB and extrinsic apoptotic pathways. CPT/BTZ disrupted the non-canonical NF-κB pathway, reflected by tumor necrosis factor (TNF) receptor associated factors 3 (TRAF3) up-regulation, NF-κB inducing kinase down-regulation, diminished p52 and p50 processing, and B-cell lymphoma-extra large (BCL-XL) down-regulation, but failed to inactivate the canonical NF-κB pathway, reflected by unchanged or increased expression of phospho-p65. The regimen also sharply increased extrinsic apoptotic pathway activation. Cells exhibiting TRAF3 knock-down, dominant-negative Fas-associated protein with death domain, knock-down of caspase-8, BCL-2/BCL-XL, or exposure to a caspase-9 inhibitor displayed markedly reduced CPT/BTZ sensitivity. Concordant results were observed in bortezomib-resistant cells. The regimen was also active in the presence of stromal cells and was relatively sparing toward normal CD34+ hematopoietic cells. Finally, ex vivo results revealed synergism in primary MM primary cells, including those BTZ, and the CPT/BTZ regimen significantly decreased tumor growth in a patient-derived MM xenograft model. These results indicate that the CPT/BTZ regimen acts via the non-canonical NF-κB as well as intrinsic/extrinsic apoptotic pathways to induce cell death in MM cells, and may represent an effective strategy in the setting of bortezomib resistance.


What can GPT-4 do for Diagnosing Rare Eye Diseases? A Pilot Study.

  • Xiaoyan Hu‎ et al.
  • Ophthalmology and therapy‎
  • 2023‎

Generative pretrained transformer-4 (GPT-4) has gained widespread attention from society, and its potential has been extensively evaluated in many areas. However, investigation of GPT-4's use in medicine, especially in the ophthalmology field, is still limited. This study aims to evaluate GPT-4's capability to identify rare ophthalmic diseases in three simulated scenarios for different end-users, including patients, family physicians, and junior ophthalmologists.


Non-canonical role for the ataxia-telangiectasia-Rad3 pathway in STAT3 activation in human multiple myeloma cells.

  • Lin Li‎ et al.
  • Cellular oncology (Dordrecht)‎
  • 2023‎

The goal of this study was to characterize the relationship between ATR and STAT3 interactions in human multiple myeloma (MM) cells.


Synergistic Interactions between the Hypomethylating Agent Thio-Deoxycytidine and Venetoclax in Myelodysplastic Syndrome Cells.

  • Xiaoyan Hu‎ et al.
  • Hematology reports‎
  • 2023‎

Interactions between the novel hypomethylating agent (HMA) thio-deoxycytidine (T-dCyd) and the BCL-2 antagonist ABT-199 (venetoclax) have been examined in human myelodysplastic syndrome (MDS) cells. The cells were exposed to agents alone or in combination, after which apoptosis was assessed, and a Western blot analysis was performed. Co-administration of T-dCyd and ABT-199 was associated with the down-regulation of DNA methyltransferase 1 (DNMT1) and synergistic interactions documented by a Median Dose Effect analysis in multiple MDS-derived lines (e.g., MOLM-13, SKM-1, and F-36P). Inducible BCL-2 knock-down significantly increased T-dCyd's lethality in MOLM-13 cells. Similar interactions were observed in the primary MDS cells, but not in the normal cord blood CD34+ cells. Enhanced killing by the T-dCyd/ABT-199 regimen was associated with increased reactive oxygen species (ROS) generation and the down-regulation of the anti-oxidant proteins Nrf2 and HO-1, as well as BCL-2. Moreover, ROS scavengers (e.g., NAC) reduced lethality. Collectively, these data suggest that combining T-dCyd with ABT-199 kills MDS cells through an ROS-dependent mechanism, and we argue that this strategy warrants consideration in MDS therapy.


Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma.

  • Yong Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

Agonistic CD40 antibodies have been demonstrated to activate antigen-presenting cells (APCs) and enhance antitumour T cell responses, thereby providing a new therapeutic option in cancer immunotherapy. In agonistic CD40 antibody-mediated inflammatory responses, a novel subset of E-cadherin + dendritic cells (DCs) has been identified, and little is known about the role of these DCs in tumour immunity. This study investigated the effect of anti-CD40-mediated inflammatory E-cadherin + DCs in murine Lewis lung carcinoma (LLC).


Lack of association between insulin receptor substrate2 rs1805097 polymorphism and the risk of colorectal and breast cancer: a meta-analysis.

  • Yue Hu‎ et al.
  • PloS one‎
  • 2014‎

Insulin receptor substrate-2 (IRS-2), a signaling adaptor protein, was involved in two cancer-related pathways (the phosphatidylinositol 3'-kinase (PI3K) and the extracellular signal-regulated kinase (ERK) pathways). Several studies have evaluated the association between IRS2 rs1805097 (G>A) polymorphisms and the risk of colorectal and breast cancer. However, the results were inconsistent.


Topical administration of cryopreserved living micronized amnion accelerates wound healing in diabetic mice by modulating local microenvironment.

  • Yongjun Zheng‎ et al.
  • Biomaterials‎
  • 2017‎

Approximately 25% of diabetic patients suffer from diabetic lower-extremity ulcer throughout their lives and 7%-20% of patients will eventually need an amputation despite standard care treatment. The development of new therapies to treat diabetic wounds is urgent. In this study, we used cryopreserved living micronized amnion (300-600 μm) to treat wounds in diabetic mice. Post-thaw micronized amnion retained high cell viability, as well as intact cell morphology and membrane structure. When transplanted onto the wounds of db/db mice, the cryopreserved living micronized amnion greatly promoted wound healing in diabetic mice mainly by secreting growth, inflammation, and chemotaxis-related factors that regulated macrophage migration and phenotype switch, recruited CD34+ progenitor cells, and increased neovascularization. In addition, the micronized amnion matrix can exist in the dermis and serve as a long-term dermal scaffold. These results demonstrated the potential of the cryopreserved living micronized amnion as a ready-to-use living dermal substitute that addresses multiple defective physiological processes of impaired wounds to treat diabetic ulcers and other chronic wounds in clinics.


Transcriptome Landscape of Intracellular Brucella ovis Surviving in RAW264.7 Macrophage Immune System.

  • Hanwei Jiao‎ et al.
  • Inflammation‎
  • 2020‎

Brucella ovis infection results in genital damage and epididymitis in rams, placental inflammation and rare abortion in ewes, and neonatal mortality in lambs. However, the mechanism underlying B. ovis infection remains unclear. In the present study, we used prokaryotic transcriptome sequencing to identify the differentially expressed genes (DEGs) between wild-type B. ovis and intracellular B. ovis in RAW264.7 macrophages. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and quantitative reverse transcriptase PCR (qRT-PCR) was used to validate the top 10 upregulated and downregulated DEGs. The results showed that 212 genes were differentially expressed, including 68 upregulated and 144 downregulated genes, which were mainly enriched in 30 GO terms linked to biological process, cellular component, and molecular function. KEGG analysis showed that the DEGs were enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, beta-alanine metabolism, and quorum sensing pathway. BME_RS01160, BME_RS04270, BME_RS08185, BME_RS12880, BME_RS25875, predicted_RNA865, and predicted_RNA953 were confirmed with the transcriptome sequencing data. Hence, our findings not only reveal the intracellular parasitism of B. ovis in the macrophage immune system, but also help to understand the mechanism of chronic B. ovis infection.


miR-203 inhibits cell proliferation and ERK pathway in prostate cancer by targeting IRS-1.

  • Yang Meng‎ et al.
  • BMC cancer‎
  • 2020‎

Prostate cancer (PCa) is one of the most common types of cancer in men. In the course of the development and progression of this disease, abnormal expression of miR-203 is usually accompanied. However, its role in prostate tumorigenesis and the underlying mechanism are poorly understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: