Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

  • Xiaoling Yang‎ et al.
  • Scientific reports‎
  • 2015‎

Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.


ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients.

  • Xiaoling Yang‎ et al.
  • PloS one‎
  • 2014‎

Alternating hemiplegia of childhood (AHC) is a rare and severe neurological disorder. ATP1A3 was recently identified as the causative gene. Here we report the first genetic study in Chinese AHC cohort. We performed whole-exome sequencing on three trios and three unrelated patients, and screened additional 41 typical cases and 100 controls by PCR-Sanger sequencing. ATP1A3 mutations were detected in 95.7% of typical AHC patients. At least 93.3% were de novo. Four late onset, atypical AHC patients were also mutation positive, suggesting the need for testing ATP1A3 mutations in atypical cases. Totally, 13 novel missense mutations (T370N, G706R, L770R, T771N, T771I, S772R, L802P, D805H, M806K, P808L, I810N, L839P and G893R) were identified in our study. By homology modeling of the mutant protein structures and calculation of an extensive list of molecular features, we identified two statistically significant molecular features, solvent accessibility and distance to metal ion, that distinguished disease-associated mutations from neutral variants. A logistic regression classifier achieved 92.9% accuracy by the average of 100 times of five-fold cross validations. Genotype-phenotype correlation analysis showed that patients with epilepsy were more likely to carry E815K mutation. In summary, ATP1A3 is the major pathogenic gene of AHC in Chinese patients; mutations have distinctive molecular features that discriminate them from neutral variants and are correlated with phenotypes.


Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

  • Shuang Peng‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2016‎

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.


Genetic analysis of benign familial epilepsies in the first year of life in a Chinese cohort.

  • Qi Zeng‎ et al.
  • Journal of human genetics‎
  • 2018‎

Benign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We used Sanger sequencing and targeted next-generation sequencing to detect gene mutations in a Chinese cohort of patients with these three disorders. A total of 79 families were collected, including 4 BFNE, 7 BFNIE, and 68 BFIE. Genetic testing led to the identification of gene mutations in 60 families (60 out of 79, 75.9%). A total of 42 families had PRRT2 mutations, 9 had KCNQ2 mutations, 8 had SCN2A mutations, and 1 had a GABRA6 mutation. In total three of four BFNE families were detected with KCNQ2 mutations. Mutations were detected in all BFNIE families, including 3 KCNQ2 mutations, 3 SCN2A mutations, and 1 PRRT2 mutation. Gene mutations were identified in 50 out of 68 BFIE families (73.5%), including 41 PRRT2 mutations (41 out of 68, 60.3%), 5 SCN2A mutations, 3 KCNQ2 mutations, and 1 GABRA6 mutation. Our results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE.


Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort.

  • Xiaoxu Yang‎ et al.
  • Scientific reports‎
  • 2017‎

Genomic mosaicism in parental gametes and peripheral tissues is an important consideration for genetic counseling. We studied a Chinese cohort affected by a severe epileptic disorder, Dravet syndrome (DS). There were 56 fathers who donated semen and 15 parents who donated multiple peripheral tissue samples. We used an ultra-sensitive quantification method, micro-droplet digital PCR (mDDPCR), to detect parental mosaicism of the proband's pathogenic mutation in SCN1A, the causal gene of DS in 112 families. Ten of the 56 paternal sperm samples were found to exhibit mosaicism of the proband's mutations, with mutant allelic fractions (MAFs) ranging from 0.03% to 39.04%. MAFs in the mosaic fathers' sperm were significantly higher than those in their blood (p = 0.00098), even after conditional probability correction (p' = 0.033). In three mosaic fathers, ultra-low fractions of mosaicism (MAF < 1%) were detected in the sperm samples. In 44 of 45 cases, mosaicism was also observed in other parental peripheral tissues. Hierarchical clustering showed that MAFs measured in the paternal sperm, hair follicles and urine samples were clustered closest together. Milder epileptic phenotypes were more likely to be observed in mosaic parents (p = 3.006e-06). Our study provides new insights for genetic counseling.


circSamd4 represses myogenic transcriptional activity of PUR proteins.

  • Poonam R Pandey‎ et al.
  • Nucleic acids research‎
  • 2020‎

By interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species. Affinity pulldown followed by mass spectrometry revealed that circSamd4 associated with PURA and PURB, two repressors of myogenesis that inhibit transcription of the myosin heavy chain (MHC) protein family. Supporting the hypothesis that circSamd4 might complex with PUR proteins and thereby prevent their interaction with DNA, silencing circSamd4 enhanced the association of PUR proteins with the Mhc promoter, while overexpressing circSamd4 interfered with the binding of PUR proteins to the Mhc promoter. These effects were abrogated when using a mutant circSamd4 lacking the PUR binding site. Our results indicate that the association of PUR proteins with circSamd4 enhances myogenesis by contributing to the derepression of MHC transcription.


GRSF1 suppresses cell senescence.

  • Ji Heon Noh‎ et al.
  • Aging‎
  • 2018‎

A prominent phenotype triggered by the loss of mitochondrial homeostasis is cellular senescence, characterized by cessation of growth and a senescence-associated secretory phenotype (SASP). We identified the G-rich RNA sequence-binding factor 1 (GRSF1) as a major mitochondrial protein implicated in this response. GRSF1 levels declined in senescent cells through reduced protein stability, and lowering GRSF1 abundance caused mitochondrial stress leading to elevated production of superoxide, increased DNA damage foci, and diminished cell proliferation. In addition, reducing GRSF1 increased the activity of a senescence-associated β-galactosidase (SA-β-gal) and the production and secretion of the SASP factor interleukin 6 (IL6). Together, our findings indicate that the decline in GRSF1 levels during cellular senescence contributes to impairing mitochondrial function, elevating ROS and DNA damage, suppressing growth, and implementing a pro-inflammatory program.


Clinical characteristics, Cryptococcus neoformans genotypes, antifungal susceptibility, and outcomes in human immunodeficiency virus-positive patients in Beijing, China.

  • Xinmin Xu‎ et al.
  • The Journal of international medical research‎
  • 2021‎

Cryptococcus neoformans is an environmental fungal pathogen that causes opportunistic infections and severe disseminated meningoencephalitis, mainly in immunocompromised patients such as those with acquired immunodeficiency syndrome (AIDS). In this study, the clinical characteristics, treatment protocols, and outcomes of 70 patients with AIDS and Cryptococcus neoformans infection at Beijing Ditan Hospital were retrospectively analyzed. We performed antimicrobial sensitivity tests and multilocus sequence typing (MLST) on C. neoformans isolates from these patients. The most common symptoms were headache (58.6%), fever (54.3%), and high cerebrospinal fluid pressure (≥200 mm H2O) (71.4%). All patients were positive for C. neoformans antigen in blood or cerebrospinal fluid. The CD4 cell counts of 92.8% (65/70) of patients were <100 cells/µL. In total, 74 C. neoformans isolates were obtained from the 70 patients. The 65 isolates that could be typed fell into 12 sequence types (STs) by MLST: ST5, ST31, ST63, ST202, ST237, ST289, ST295, ST296, ST298, ST324, ST337, and ST359. ST5 was the major type, accounting for 78.5% of isolates (51/65). This study comprehensively assessed the clinical and molecular epidemiology of C. neoformans in patients with AIDS and may inform the development of targeted prevention and treatment strategies for immunocompromised patients with C. neoformans infection.


Phenotypes of GNAO1 Variants in a Chinese Cohort.

  • Xiaoling Yang‎ et al.
  • Frontiers in neurology‎
  • 2021‎

This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic-clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.


Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest.

  • Martina Rossi‎ et al.
  • eLife‎
  • 2023‎

Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-β-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.


Senescence suppresses the integrated stress response and activates a stress-enhanced secretory phenotype.

  • Matthew J Payea‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Senescence is a state of indefinite cell cycle arrest associated with aging, cancer, and age-related diseases. Here, using label-based mass spectrometry, ribosome profiling and nanopore direct RNA sequencing, we explore the coordinated interaction of translational and transcriptional programs of human cellular senescence. We find that translational deregulation and a corresponding maladaptive integrated stress response (ISR) is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames. Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. Furthermore, absent a response, stress augments the senescence secretory phenotype, thus intensifying a proinflammatory state that exacerbates disease. Our results reveal a novel mechanism that senescent cells exploit to evade an adaptive stress response and remain viable.


HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP.

  • Ji Heon Noh‎ et al.
  • Genes & development‎
  • 2016‎

Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.


miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine.

  • ChengJian Cao‎ et al.
  • Experimental cell research‎
  • 2016‎

MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.


En masse nascent transcription analysis to elucidate regulatory transcription factors.

  • Jinshui Fan‎ et al.
  • Nucleic acids research‎
  • 2006‎

Despite exhaustively informing about steady-state mRNA abundance, DNA microarrays have been used with limited success to identify regulatory transcription factors (TFs). The main limitation of this approach is that altered mRNA stability also strongly governs the patterns of expressed genes. Here, we used nuclear run-on assays and microarrays to systematically interrogate changes in nascent transcription in cells treated with the topoisomerase inhibitor camptothecin (CPT). Analysis of the promoters of coordinately transcribed genes after CPT treatment suggested the involvement of TFs c-Myb and Rfx1. The predicted CPT-dependent associations were subsequently confirmed by chromatin immunoprecipitation assays. Importantly, after RNAi-mediated knockdown of each TF, the CPT-elicited induction of c-Myb- and/or Rfx1-regulated mRNAs was diminished and the overall cellular response was impaired. The strategies described here permit the successful identification of the TFs responsible for implementing adaptive gene expression programs in response to cellular stimulation.


Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation.

  • Shuang Peng‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, we attempted to explore the effect and possible mechanism of Andrographolide on OVA-induced asthma. OVA challenge induced significant airway inflammatory cell recruitment and lung histological alterations, which were ameliorated by Andrographolide. The protein levels of cytokines in bron-choalveolar fluid (BALF) and serum were reduced by Andrographolide administration as well as the mRNA levels in lung tissue. Mechanically, Andrographolide markedly hampered the activation of nuclear factor-κB (NF-κB) and NLRP3 inflammasome both in vivo and vitro thus decreased levels of TNF-α and IL-1β. Finally, we confirmed that ROS scavenging was responsible for Andrographolide's inactivation of NF-κB and NLRP3 inflammasome signaling. Our study here revealed the effect and possible mechanism of Andrographolide on asthma, which may represent a new therapeutic approach for treating this disease.


Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex.

  • Michael B Krawchuk‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2020‎

The impact of different neuronal populations on local cerebral blood flow (CBF) regulation is not well known and insight into these relationships could enhance the interpretation of brain function and dysfunction from brain imaging data. We investigated the role of sub-types of inhibitory neuron activity on the regulation of CBF using optogenetics, laser Doppler flowmetry and different transgenic mouse models (parvalbumin (PV), vasoactive intestinal peptide (VIP), somatostatin (SOM) and nitric oxide synthase (NOS)). Whisker stimulation was used to verify that typical CBF responses were obtained in all mice. Photo-stimulation of SOM-cre and NOS-cre mice produced significant increases in CBF that were similar to whisker responses. In NOS-cre mice, CBF responses scaled with the photo-stimulus pulse duration and frequency. In SOM-cre mice, CBF increases were followed by decreases. In VIP-cre mice, photo-stimulation did not consistently produce significant changes in CBF, while slower increases in CBF that peaked 14-18 s after stimulation onset were observed in PV-cre mice. Control experiments performed in non-expressing regions showed no changes in CBF. These findings suggest that dysfunction in NOS or SOM neurons can have a significant impact on vascular responses that are detected by brain imaging methods like functional magnetic resonance imaging (fMRI).


Computer-aided diagnosis of school-aged children with ASD using full frequency bands and enhanced SAE: A multi-institution study.

  • Zhiyong Xiao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Autism spectrum disorder (ASD) is a neurodevelopmental and network-level disorder mainly diagnosed in children. The aim of the current study was to develop a computer-aided diagnosis method with high accuracy to distinguish school-aged children (5-12 years) with ASD from those typically developing (TD). The current study used multi-institutional functional magnetic resonance imaging (fMRI) datasets of 198 school-aged participants from the Autism Brain Imaging Data Exchange II database and employed enhanced stacked auto-encoders to distinguish between school-aged children with ASD from those TD. In the current study, the average diagnostic accuracy was 96.26% (average sensitivity=98.03%; average specificity=93.62%); these results of classification were higher than that observed in previous studies using single or two frequency bands. The current study demonstrated that the proposed computer-aided diagnosis method may be used to distinguish between school-aged children with ASD from those TD. Attempts to use full frequency bands, deep learning based algorithm and multi-institutional fMRI datasets to distinguish between school-aged children with ASD from TD may be a key step towards clinical auxiliary diagnosis independent of sex, handedness, intellectual level or scanning parameters of fMRI data.


Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis.

  • Jian Gao‎ et al.
  • Cell death & disease‎
  • 2019‎

Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy, whereas no effective interventions are available. Andrographolide, an active component extracted from Andrographis paniculate, is prescribed as a treatment for upper respiratory tract infection. Here we report the potential radioprotective effect and mechanism of Andrographolide on RILI. C57BL/6 mice were exposed to 18 Gy of whole thorax irradiation, followed by intraperitoneal injection of Andrographolide every other day for 4 weeks. Andrographolide significantly ameliorated radiation-induced lung tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine release in the early phase and progressive fibrosis in the late phase. Moreover, Andrographolide markedly hampered radiation-induced activation of the AIM2 inflammasome and pyroptosis in vivo. Furthermore, bone marrow-derived macrophages (BMDMs) were exposed to 8 Gy of X-ray radiation in vitro and Andrographolide significantly inhibited AIM2 inflammasome mediated-pyroptosis in BMDMs. Mechanistically, Andrographolide effectively prevented AIM2 from translocating into the nucleus to sense DNA damage induced by radiation or chemotherapeutic agents in BMDMs. Taken together, Andrographolide ameliorates RILI by suppressing AIM2 inflammasome mediated-pyroptosis in macrophage, identifying Andrographolide as a novel potential protective agent for RILI.


Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation.

  • Leon C Ho‎ et al.
  • Scientific reports‎
  • 2016‎

The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0-40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments.


Long non-coding RNA LINC00997 silencing inhibits the progression and metastasis of colorectal cancer by sponging miR-512-3p.

  • Zhiliang Shi‎ et al.
  • Bioengineered‎
  • 2021‎

We aimed to study the role of LINC00997 in the metastasis of colorectal cancer (CRC). LINC00997 and miR-512-3p expression in the primary colorectal cancer (NCRC) tissues and metastatic colorectal cancer (MCRC) tissues were detected using RT-qPCR. The Cancer Genome Atlas database was used to evaluate LINC00997 levels in the NCRC and MCRC tissues, and the correlations of LINC00997 expression with distant metastasis (M), regional lymph node metastasis (N), age and tumor stage were analyzed. Subsequently, RT-qPCR was performed to determine the expression of metastasis-related genes in MCRC tissues and analyze the correlation of LINC00997 or miR-512-3p level with the protein expression of metastasis-related genes. In vitro, LINC00997 expression in several CRC cell lines was examined. After LINC00997 silencing, cell invasion and migration were evaluated with Transwell and wound healing assays, respectively. The expression of metastasis- and EMT-related proteins was measured. Additionally, the potential interaction between LINC00997 and miR-512-3p was verified using a luciferase reporter assay. Rescue assays were conducted to clarify the regulatory effects of LINC00997 and miR-512-3p on CRC development. Results revealed that LINC00997 was frequently overexpressed in MCRC tissues, which was positively related to the tumor metastasis and stage. Additionally, LINC00997 was significantly elevated in CRC cells and LINC00997 silencing inhibited the invasion, migration and EMT of CRC cells, which was restored by miR-512-3p inhibitor. Luciferase reporter assay confirmed that LINC00997 could target miR-512-3p. In conclusion, LINC00997 regulated the metastasis of CRC by targeting miR-512-3p, providing some insights into the regulatory mechanism of CRC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: