Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 230 papers

MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma.

  • Zhenghai Bai‎ et al.
  • Oncology reports‎
  • 2015‎

Human pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type with early metastasis, which leads to poor prognosis for patients. Mounting evidence suggests that microRNAs (miRNAs) act as critical factors for tumor recurrence and metastasis. miR-153 has been suggested as a novel tumor-associated miRNA, which is involved in tumor metastasis. However, the clinical significance of miR-153 and its role in PDAC remains to be investigated. The aim of the present study was to investigate the expression levels of miR-153 using RT-qPCR in human PDAC cell lines and tissues. A clinical association analysis was performed to investigate the clinical significance of miR-153. The results showed that, the relative expression of miR-153 in PDAC cells was obviously decreased as compared to that in the normal human pancreatic duct epithelial cell line. The mean expression of miR-153 in PDAC tissues was significantly reduced as compared to that in the normal pancreatic tissues. The clinical analysis revealed that a low expression of miR-153 was closely associated with poor prognostic features and shorter long-term survival of PDAC patients. Furthermore, univariate and multivariate Cox regression analyses showed that miR-153 was an independent prognostic factor for predicting survival in PDAC patients. In vitro studies demonstrated that the upregulation of miR-153 inhibited migration and invasion in MIAPaCa-2 cells. By contrast, the downregulation of miR-153 increased the number of migrated and invaded AsPC-1 cells. miR-153 inversely regulated SNAI1 abundance in MIAPaCa-2 cells. Notably, SNAI1 was identified as a direct target of miR-153 in PDAC. Furthermore, an inverse correlation between miR-153 and SNAI1 expression was observed in PDAC tissues. In conclusion, the results showed miR-153 is an independent prognostic marker for predicting survival in PDAC patients and inhibits cell migration and invasion by targeting SNAI1.


Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice.

  • Avanish K Varshney‎ et al.
  • mBio‎
  • 2014‎

Staphylococcal enterotoxin B (SEB) is a potent toxin that is produced by Staphylococcus aureus strains and is classified as a category B select agent. We have previously shown that monoclonal antibody (MAb) 20B1, a murine anti-SEB IgG1, successfully treats SEB-induced lethal shock (SEBILS) and bacteremia that is caused by SEB-producing S. aureus. In this study, we have generated two isotype switch variants of the original IgG1 MAb 20B1, an IgG2a and IgG2b, both bearing the same variable region sequence, and compared their neutralizing and protective activity in in vitro and in vivo assays, respectively. All 3 isotypes demonstrated comparable affinity to SEB and comparable 50% inhibitory concentrations (IC50s) in T cell proliferation assays. In vivo, however, the IgG2a isotype variant of 20B1 exhibited significantly greater protection than IgG1 or IgG2b in murine SEB intoxication and S. aureus sepsis models. Protection was associated with downmodulation of inflammatory host response. Our data demonstrate that changing the isotype of already protective MAbs, without affecting their antigen specificity or sensitivity, can result in an enhancement of their protective ability. Isotype selection, therefore, should be carefully considered in the development of toxin-neutralizing MAbs and the design of antibody therapeutics.


Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean.

  • Xiaobo Wang‎ et al.
  • Gene‎
  • 2014‎

Plant VQ motif-containing protein family plays crucial roles in plant growth, seed development, and defense responses in Arabidopsis. However, its function in soybean is still not well defined. We aim to identify the VQ gene family, and explore the genetic variation of active GmVQ genes in soybean and their expression patterns under low nitrogen stresses. A total of 74 VQ motif-containing genes were identified in soybean genome, and were clustered into five distinct subfamilies (GmVQI-V) with each gene having two or three copies except GmVQ55 (GmVQIV) with single copy. Fourteen genes with relatively high expression level, at least in one tissue, were defined as active GmVQ genes. Most of these active GmVQ genes specifically expressed in soybean pod shell (7/74), root (9/74) and/or nodule (10/74) respectively. Single nucleotide polymorphism (SNP) analysis in cultivated and wild soybeans revealed there were selected site(s) in GmVQ6, GmVQ7, GmVQ10, GmVQ26 and GmVQ61, which means that these genes have undergone artificial selection during soybean domestication. After low nitrogen treatment, enhanced expression of VQ genes was noticed in specific tissues, such as GmVQ53, GmVQ26, GmVQ58, GmVQ61, GmVQ70 and GmVQ6 in shoot, and GmVQ53, GmVQ58, GmVQ48 in root. On the contrary, suppressed expression of GmVQ57, GmVQ21 and GmVQ1 genes was noticed in root after the treatment. Duplicated copy of the active GmVQ genes showed similar expression pattern, suggesting that these genes might be complete copies. The results suggested that soybean VQ-motif containing genes may act as positive or negative regulators in soybean growth, development and nitrogen metabolism. Taken together, our results provided useful information for functional characterization of soybean GmVQ genes to unravel their biological roles.


Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration.

  • Danfeng Cai‎ et al.
  • Cell‎
  • 2014‎

E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo.


Dynein light chain DLC-1 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells.

  • Xiaobo Wang‎ et al.
  • Development (Cambridge, England)‎
  • 2016‎

PUF family translational repressors are conserved developmental regulators, but the molecular function provided by the regions flanking the PUF RNA-binding domain is unknown. In C. elegans, the PUF proteins FBF-1 and FBF-2 support germline progenitor maintenance by repressing production of meiotic proteins and use distinct mechanisms to repress their target mRNAs. We identify dynein light chain DLC-1 as an important regulator of FBF-2 function. DLC-1 directly binds to FBF-2 outside of the RNA-binding domain and promotes FBF-2 localization and function. By contrast, DLC-1 does not interact with FBF-1 and does not contribute to FBF-1 activity. Surprisingly, we find that the contribution of DLC-1 to FBF-2 activity is independent of the dynein motor. Our findings suggest that PUF protein localization and activity are mediated by sequences flanking the RNA-binding domain that bind specific molecular partners. Furthermore, these results identify a new role for DLC-1 in post-transcriptional regulation of gene expression.


Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells.

  • Dan Shi‎ et al.
  • International journal of nanomedicine‎
  • 2016‎

Chronic myelogenous leukemia (CML) is characterized by the t(9;22) (q34;q11)-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs) have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1) participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during realgar NP treatment, a Cav-1 overexpression cell model was established by using transient transfection. The results indicated that Cav-1 overexpression inhibited K562 cell proliferation, promoted endogenic autophagy, and increased the sensitivity of K562 cells to realgar NPs. Therefore, the results demonstrated that realgar NPs degraded Bcr-Abl oncoprotein, while the underlying mechanism might be related to apoptosis and autophagy, and Cav-1 might be considered as a potential target for clinical comprehensive therapy of CML.


Ezrin Regulating the Cytoskeleton Remodeling is Required for Hypoxia-Induced Myofibroblast Proliferation and Migration.

  • Bin Yi‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2015‎

Hypoxia pulmonary arterial hypertension (HPAH) is a disease of the small vessels characterized by sustained vasoconstriction, thickening of arterial walls, vascular remodeling, and progressive increase in pulmonary vascular resistance, thus leading to right heart failure and finally death. Recent evidence demonstrated that massive pulmonary artery smooth muscle-like cells (PASMLCs) accumulating in the intima might also be developed from the differentiation of pulmonary myofibroblast (PMF) of tunica media. And PMF appeared the phenomenon of the cytoskeleton remodeling. So, it would be important in the clarification of the pivotal factors controlling this cytoskeleton structure change.


Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways.

  • Chunxia Chen‎ et al.
  • Scientific reports‎
  • 2016‎

Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival.


CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.

  • Jean-Michel Michno‎ et al.
  • GM crops & food‎
  • 2015‎

The CRISPR/Cas9 system is rapidly becoming the reagent of choice for targeted mutagenesis and gene editing in crop species. There are currently intense research efforts in the crop sciences to identify efficient CRISPR/Cas9 platforms to carry out targeted mutagenesis and gene editing projects. These efforts typically result in the incremental tweaking of various platform components including the identification of crop-specific promoters and terminators for optimal expression of the Cas9 enzyme and identification of promoters for expression of the CRISPR guide RNA. In this report, we demonstrate the development of an online web tool for fast identification of CRISPR/Cas9 target loci within soybean gene models, and generic DNA sequences. The web-tool described in this work can quickly identify a high number of potential CRISPR/Cas9 target sites, including restriction enzyme sites that can facilitate the detection of new mutations. In conjunction with the web tool, a soybean codon-optimized CRISPR/Cas9 platform was designed to direct double-stranded breaks to the targeted loci in hairy root transformed cells. The modified Cas9 enzyme was shown to successfully mutate target genes in somatic cells of 2 legume species, soybean and Medicago truncatula. These new tools may help facilitate targeted mutagenesis in legume and other plant species.


Splicing Machinery Facilitates Post-Transcriptional Regulation by FBFs and Other RNA-Binding Proteins in Caenorhabditis elegans Germline.

  • Preston Novak‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Genetic interaction screens are an important approach for understanding complex regulatory networks governing development. We used a genetic interaction screen to identify cofactors of FBF-1 and FBF-2, RNA-binding proteins that regulate germline stem cell proliferation in Caenorhabditis elegans. We found that components of splicing machinery contribute to FBF activity as splicing factor knockdowns enhance sterility of fbf-1 and fbf-2 single mutants. This sterility phenocopied multiple aspects of loss of fbf function, suggesting that splicing factors contribute to stem cell maintenance. However, previous reports indicate that splicing factors instead promote the opposite cell fate, namely, differentiation. We explain this discrepancy by proposing that splicing factors facilitate overall RNA regulation in the germline. Indeed, we find that loss of splicing factors produces synthetic phenotypes with a mutation in another RNA regulator, FOG-1, but not with a mutation in a gene unrelated to posttranscriptional regulation (dhc-1). We conclude that inefficient pre-mRNA splicing may interfere with multiple posttranscriptional regulatory events, which has to be considered when interpreting results of genetic interaction screens.


Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats.

  • Qipeng Zhao‎ et al.
  • Journal of ethnopharmacology‎
  • 2016‎

The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways.


Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model.

  • Yuwei Shang‎ et al.
  • Scientific reports‎
  • 2016‎

A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens.


Penaeid shrimp genome provides insights into benthic adaptation and frequent molting.

  • Xiaojun Zhang‎ et al.
  • Nature communications‎
  • 2019‎

Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture.


The correlation between hypoxia-inducible factor-1α, matrix metalloproteinase-9 and functional recovery following chronic spinal cord compression.

  • Xing Cheng‎ et al.
  • Brain research‎
  • 2019‎

The molecular mechanisms underlying cervical spondylotic myelopathy (CSM) are poorly understood. To assess the correlation between HIF-1α, MMP-9 and functional recovery following chronic cervical spinal cord compression (CSCI). Rats in the sham group underwent C5 semi-laminectomy, while a water-absorbable polyurethane polymer was implanted into the C6 epidural space in the chronic CSCI group. Basso, Beattie and Bresnahan score and somatosensory evoked potentials were used to evaluate neurological function. Hematoxylin and eosin staining was performed to assess pathological changes in the spinal cord, while immunohistochemical analysis was used to examine HIF-1α and MMP-9 expression on days 7, 28, 42 and 70 post-surgery. Normal rats were only used for HE staining. The BBB score was significantly reduced on day 28 following CSCI, while SEPs exhibited decreased amplitude and increased latency. In chronic CSCI group, the BBB score and SEPs significantly improved on day 70 compared with day 28. HE staining revealed different level of spinal cord edema after chronic CSCI. Compared with the sham group, immunohistochemical analyses revealed that HIF-1α- and MMP-9-positive cells were increased on day 7 and peaked on day 28. HIF-1α and MMP-9 expression were demonstrated to be significantly positively correlated, whereas HIF-1α expression and BBB score were significantly negatively correlated, as well MMP-9 expression and BBB score. HIF-1α and MMP-9 expression are increased following chronic spinal cord compression and are positively correlated with one another. Decreased expression of HIF-1α and MMP-9 may contribute to functional recovery following CSCI. This expression pattern of HIF-1α and MMP-9 may give a new perspective on the molecular mechanisms of CSM.


Effects of T-2 toxin on digestive enzyme activity, intestinal histopathology and growth in shrimp Litopenaeus vannamei.

  • Zhanrui Huang‎ et al.
  • Scientific reports‎
  • 2019‎

T-2 toxin (T-2), a naturally occurring mycotoxin that often accumulates in aquatic animals via contaminated feed, is toxic to animals, including humans. In this study, six groups of shrimp (n = 30 shrimps/group) were given T-2 in feed at concentrations of 0-12.2 mg/kg for 20 days. T-2 accumulation, intestinal histopathology, digestive enzyme activities and subsequent effects on shrimp are reported. Compared to the control, T-2 significantly reduced weight gain, specific growth rate, and survival. The histopathology of shrimp intestine showed concentration-dependent degenerative and necrotic changes in response to dietary T-2. Progressive damage to the microstructures of shrimp intestine occurred with increasing dietary T-2 concentrations, with initial inflammation of the mucosal tissue at T-2 concentrations of 0.5 and 1.2 mg/kg, progressing to disappearance of intestinal villi and degeneration and necrosis of the submucosa at 12.2 mg/kg. Intestinal amylase and protease activities increased at low T-2 concentrations but showed significant inhibition at high concentrations; however, the opposite trend occurred for lipase activity. Collectively, these results indicate that digestive enzyme activities and mucosal structures are markedly affected by exposure to T-2, and these may have contributed to the lower survival rate of shrimp.


Epitope mapping and cellular localization of swine acute diarrhea syndrome coronavirus nucleocapsid protein using a novel monoclonal antibody.

  • Yuru Han‎ et al.
  • Virus research‎
  • 2019‎

A swine acute diarrhea syndrome coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in Southern China in 2017. To develop an antigen that is specific, sensitive, and easy to prepare for serological diagnosis, antigenic sites in the SADS-CoV nucleocapsid (N) protein were screened. We generated and characterized an N-reactive monoclonal antibody (mAb) 3E9 from mice immunized with recombinant N protein. Through fine epitope mapping of mAb 3E9 using a panel of eukaryotic-expressed polypeptides with GFP-tags, we identified the motif 343DAPVFTPAP351 as the minimal unit of the linear B-cell epitope recognized by mAb 3E9. Protein sequence alignment indicated that 343DAPVFTPAP351 was highly conserved in different SADS-CoV strains and SADS-related coronaviruses from bat, with one substitution in this motif in HKU2-related bat coronavirus. Using mAb 3E9, we observed that N protein was expressed in the cytoplasm and was in the nucleolus during SADS-CoV replication. N protein was immunoprecipitated from SADS-CoV-infected Vero E6 cells. Taken together, our results indicated that 3E9 mAb could be a useful tool to investigate the structure and function of N protein during viral replication.


Loss of cell polarity regulated by PTEN/Cdc42 enrolled in the process of Hepatopulmonary Syndrome.

  • Jing Gao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

One central factor in hepatopulmonary syndrome (HPS) pathogenesis is pulmonary vascular remodelling (PVR) which involves dysregulation of proliferation and migration in pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that Apical/basolateral polarity plays an important role in cell proliferation, migration, adhesion and differentiation. In this study, we explored whether cell polarity is involved and critical in experimental HPS rats that are induced by common bile duct ligation (CBDL). Cell polarity related proteins were analysed in CBDL rats lung and PMVECs under the HPS serum stimulation by immunofluorescence assay. Cdc42/PTEN activity, cell proliferation and migration and Annexin A2 (AX2) in PMVECs were determined, respectively. Cell polarity related proteins, lost their specialized luminal localization in PMVECs of the CBDL rat. The loss of cell polarity was induced by abnormal activity of Cdc42, which was strongly enhanced by the interaction between p-PTEN and Annexin A2 in PMVECs, after treatment with serum from CBDL rats. It led to over-proliferation and high migration ability of PMVECs. Down-regulation of PTEN-Cdc42 activity in PMVECs restored cell polarity and thus reduced their ability of migration and proliferation. Our study suggested that the loss of cell polarity plays a critical role in the pathogenesis of HPS-associated PVR and may become a potentially effective therapeutic target.


Efficacy of the Bartha-K61 vaccine and a gE-/gI-/TK- prototype vaccine against variant porcine pseudorabies virus (vPRV) in piglets with sublethal challenge of vPRV.

  • Jin Wang‎ et al.
  • Research in veterinary science‎
  • 2020‎

Pseudorabies has caused huge economic losses in China's pig industry and recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Therefore, the prevention and control of this recurrence of pseudorabies in China has been given priority. In a previous study, we showed that a suitable dose [1 × 106.3 50% tissue culture infectious dose (TCID50) per animal] of commercial Bartha-K61 vaccine protects growing pigs against lethal challenge by the emerging vPRV strain XJ5. In this study, different doses of the Bartha-K61 vaccine and our newly developed rPRV-gI-/gE-/TK- prototype vaccine derived from the vPRV strain XJ5 were used to evaluate immune protection against sublethal challenge by the vPRV strain XJ5. Pigs vaccinated with high doses of the Bartha-K61 vaccine or rPRV-gI-/gE-/TK- prototype vaccine showed no differences in their humoral immune responses, clinical symptoms, body weight gains, viral shedding, or gross and histological lesions after sublethal challenge by the vPRV strain XJ5. Therefore, we concluded that the Bartha-K61 vaccine at a dose of 1 × 105 TCID50 per animal protects pigs against sublethal challenge by the vPRV strain XJ5 and performs equally well as the same dose of the rPRV-gI-/gE-/TK- vaccine, whereas lower doses of the Bartha-K61 vaccine alone do not protect pigs from this challenge. These findings provide useful information for vaccination interventions and the ultimate eradication of pseudorabies caused by vPRV strains emerging in China.


Rhodiola Crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle.

  • Ya Hou‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

The aim of present study was to evaluate the potential effects of Rhodiola crenulata oral liquid (RCOL) on exhaustive exercise (EE)-induced fatigue in mice. Male Institute of Cancer Research mice from five treatment groups (n=10 per group) were orally administered with sterilized water for the Control and EE groups and/or RCOL at doses of 1.02, 3.03 and 6.06 ml/kg/day, once daily for 2 weeks. Anti-fatigue activity was subsequently evaluated by measuring the levels of creatine kinase (CK), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and total anti-oxidative capability (T-AOC). Histopathology was assessed using hematoxylin and eosin staining. Ultrastructures of mitochondria were observed by transmission electron microscopy. Energy supply capacity was assessed using citrate synthase (CS), succinate dehydrogenase (SDH), Na+-K+-ATPase, and liver and quadriceps glycogen content assays. Expression levels of mRNA and protein associated with mitophagy in the skeletal muscle were measured by reverse transcription-quantitative PCR and western blotting, respectively. RCOL was observed to markedly inhibit fatigue-induced oxidative stress by increasing the activities of SOD, CAT and T-AOC, whilst reducing the accumulation of LA, CK, LDH and MDA. Histological analysis of the quadriceps femoris tissue suggested increased numbers of muscle fibers in the RCOL groups compared with those in the EE group. RCOL administration was found to reverse EE-induced mitochondrial structural damage and alleviated defects inflicted onto the energy supply mechanism by increasing CS, SDH, Na+-K+-ATPase and glycogen levels. Additionally, RCOL reduced the protein expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated proteins 1A/1B light chain 3, sequestosome 1 and ubiquitin, whilst lowering the gene expression of PINK1 and Parkin. Taken together, results from the present study clarified the anti-fatigue effect of RCOL, where the underlying mechanism may be associated with increased antioxidant activity, enhanced energy production and the inhibition of mitophagy by suppressing the PINK1/Parkin signaling pathway.


Cell-matrix adhesion and cell-cell adhesion differentially control basal myosin oscillation and Drosophila egg chamber elongation.

  • Xiang Qin‎ et al.
  • Nature communications‎
  • 2017‎

Pulsatile actomyosin contractility, important in tissue morphogenesis, has been studied mainly in apical but less in basal domains. Basal myosin oscillation underlying egg chamber elongation is regulated by both cell-matrix and cell-cell adhesions. However, the mechanism by which these two adhesions govern basal myosin oscillation and tissue elongation is unknown. Here we demonstrate that cell-matrix adhesion positively regulates basal junctional Rho1 activity and medio-basal ROCK and myosin activities, thus strongly controlling tissue elongation. Differently, cell-cell adhesion governs basal myosin oscillation through controlling medio-basal distributions of both ROCK and myosin signals, which are related to the spatial limitations of cell-matrix adhesion and stress fibres. Contrary to cell-matrix adhesion, cell-cell adhesion weakly affects tissue elongation. In vivo optogenetic protein inhibition spatiotemporally confirms the different effects of these two adhesions on basal myosin oscillation. This study highlights the activity and distribution controls of basal myosin contractility mediated by cell-matrix and cell-cell adhesions, respectively, during tissue morphogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: