Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

3-(3-pyridylmethylidene)-2-indolinone reduces the severity of colonic injury in a murine model of experimental colitis.

  • Kun-Ping Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2015‎

Nrf2 is the key transcription factor regulating the antioxidant response which is crucial for cytoprotection against extracellular stresses. Numerous in vivo studies indicate that Nrf2 plays a protective role in anti-inflammatory response. 3-(3-Pyridylmethylidene)-2-indolinone (PMID) is a synthesized derivative of 2-indolinone compounds. Our previous study suggested that PMID induces the activation of Nrf2/ARE pathway, then protecting against oxidative stress-mediated cell death. However, little is known regarding the anti-inflammatory properties of PMID in severe inflammatory phenotypes. In the present study we determined if PMID treatment protects mice from dextran sodium sulphate- (DSS-) induced colitis. The result suggests that treatment with PMID prior to colitis induction significantly reduced body weight loss, shortened colon length, and decreased disease activity index compared to control mice. Histopathological analysis of the colon revealed attenuated inflammation in PMID pretreated animals. The levels of inflammatory markers in colon tissue and serum were reduced associated with inhibition of NF-κB activation. The expression levels of Nrf2-dependent genes such as HO-1, NQO1, and Nrf2 were increased in PMID pretreated mice. However, PMID pretreatment did not prevent DSS-induced colitis in Nrf2 knockout mice. These data indicate that PMID pretreatment in mice confers protection against DSS-induced colitis in Nrf2-dependent manner, suggesting a potential role of PMID in anti-inflammatory response.


Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway.

  • Ming Gao‎ et al.
  • Cellular signalling‎
  • 2014‎

Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.


14-3-3ζ interacts with hepatocyte nuclear factor 1α and enhances its DNA binding and transcriptional activation.

  • Miao Yu‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

14-3-3 proteins regulate numerous cellular processes through interaction with a variety of proteins, and have been identified as HNF1α binding partner by mass spectrometry analysis in our previous study. In the present study, the interaction between 14-3-3ζ and HNF1α has been further validated by in vivo and in vitro assays. Moreover, we have found that overexpression of 14-3-3ζ potentiated the transcriptional activity of HNF1α in cultured cells, and silencing of 14-3-3ζ by RNA interference in HepG2 cells specifically affected the HNF1α-dependent gene expression. Furthermore, we have demonstrated that 14-3-3ζ is recruited to endogenous HNF1α responsive promoters and enhances HNF1α binding to its cognate DNA sequences. In addition, we have also provided evidence that the association between HNF1α and 14-3-3ζ is phosphorylation-dependent. Taken together, these results suggest that 14-3-3ζ may be an endogenous physiologic regulator of HNF1α.


Low toxicity and high immunogenicity of an inactivated vaccine candidate against COVID-19 in different animal models.

  • Ze-Jun Wang‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

The ongoing COVID-19 pandemic is causing huge impact on health, life, and global economy, which is characterized by rapid spreading of SARS-CoV-2, high number of confirmed cases and a fatality/case rate worldwide reported by WHO. The most effective intervention measure will be to develop safe and effective vaccines to protect the population from the disease and limit the spread of the virus. An inactivated, whole virus vaccine candidate of SARS-CoV-2 has been developed by Wuhan Institute of Biological Products and Wuhan Institute of Virology. The low toxicity, immunogenicity, and immune persistence were investigated in preclinical studies using seven different species of animals. The results showed that the vaccine candidate was well tolerated and stimulated high levels of specific IgG and neutralizing antibodies. Low or no toxicity in three species of animals was also demonstrated in preclinical study of the vaccine candidate. Biochemical analysis of structural proteins and purity analysis were performed. The inactivated, whole virion vaccine was characterized with safe double-inactivation, no use of DNases and high purity. Dosages, boosting times, adjuvants, and immunization schedules were shown to be important for stimulating a strong humoral immune response in animals tested. Preliminary observation in ongoing phase I and II clinical trials of the vaccine candidate in Wuzhi County, Henan Province, showed that the vaccine is well tolerant. The results were characterized by very low proportion and low degree of side effects, high levels of neutralizing antibodies, and seroconversion. These results consistent with the results obtained from preclinical data on the safety.


Toll-like receptor 5-mediated signaling enhances liver regeneration in mice.

  • Wen Zhang‎ et al.
  • Military Medical Research‎
  • 2021‎

Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration.


Development of an mRNA vaccine against a panel of heterologous H1N1 seasonal influenza viruses using a consensus hemagglutinin sequence.

  • Ning Ma‎ et al.
  • Emerging microbes & infections‎
  • 2023‎

Seasonal influenza, causes hundreds of thousands of deaths annually, posing a severe threat to human health. Currently available influenza vaccines are targeted only at specific strains or conserved epitopes; however, these vaccines are not completely efficacious because influenza viruses can undergo mutation during circulation, leading to antigenic mismatch between recommended strains and circulating strains and elusion from the immune system. Therefore, developing an influenza vaccine that is quick, effective, and broadly protective has become crucial, and the integral part of hemagglutinin (HA) remains an ideal target for vaccine development. This study developed a lipid nanoparticle-encapsulated nucleoside-modified mRNA vaccine (mRNA-LNPs) encoding a consensus full-length HA sequence (H1c) and evaluated its protective efficacy and immunogenicity through in vitro and in vivo assays. Following two intramuscular immunizations (2, 10 µg, or 20 µg) at a 3-week interval in BALB/c mice, H1c-mRNA-LNP vaccine induced strong antibodies as shown in the hemagglutination-inhibition test and protective neutralizing antibodies against numerous heterologous H1N1 influenza viruses as shown in the microneutralization assay. Additionally, both Th1- and Th2-biased cellular immune responses were elicited, with the Th1-biased response being stronger. Two doses of the H1c-mRNA-LNP vaccine could neutralize a panel of heterologous H1N1 influenza viruses and could confer protection in mice. Taken together, these findings suggest that the H1c-mRNA-LNP vaccine encoding a consensus full-length HA is a feasible strategy for developing a cross-protective vaccine against a panel of heterologous H1N1 influenza viruses.


Immunosuppressants exert antiviral effects against influenza A(H1N1)pdm09 virus via inhibition of nucleic acid synthesis, mRNA splicing, and protein stability.

  • Xin Wang‎ et al.
  • Virulence‎
  • 2024‎

Influenza A virus (IAV) poses a threat to patients receiving immunosuppressive medications since they are more susceptible to infection with severe symptoms, and even death. Understanding the direct effects of immunosuppressants on IAV infection is critical for optimizing immunosuppression in these patients who are infected or at risk of influenza virus infection. We profiled the effects of 10 immunosuppressants, explored the antiviral mechanisms of immunosuppressants, and demonstrated the combined effects of immunosuppressants with the antiviral drug oseltamivir in IAV-infected cell models. We found that mycophenolic acid (MPA) strongly inhibits viral RNA replication via depleting cellular guanosine pool. Treatment with 6-Thioguanine (6-TG) promoted viral protein degradation through a proteasomal pathway. Filgotinib blocked mRNA splicing of matrix protein 2, resulting in decreased viral particle assembly. Furthermore, combined treatment with immunosuppressants and oseltamivir inhibits IAV viral particle production in an additive or synergic manner. Our results suggest that MPA, 6-TG, and filgotinib could be the preferential choices for patients who must take immunosuppressants but are at risk of influenza virus infection.


Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation.

  • Long Zhao‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.


Predicting intraventricular hemorrhage growth with a machine learning-based, radiomics-clinical model.

  • Dong-Qin Zhu‎ et al.
  • Aging‎
  • 2021‎

We constructed a radiomics-clinical model to predict intraventricular hemorrhage (IVH) growth after spontaneous intracerebral hematoma. The model was developed using a training cohort (N=626) and validated with an independent testing cohort (N=270). Radiomics features and clinical predictors were selected using the least absolute shrinkage and selection operator (LASSO) method and multivariate analysis. The radiomics score (Rad-score) was calculated through linear combination of selected features multiplied by their respective LASSO coefficients. The support vector machine (SVM) method was used to construct the model. IVH growth was experienced by 13.4% and 13.7% of patients in the training and testing cohorts, respectively. The Rad-score was associated with severe IVH and poor outcome. Independent predictors of IVH growth included hypercholesterolemia (odds ratio [OR], 0.12 [95%CI, 0.02-0.90]; p=0.039), baseline Graeb score (OR, 1.26 [95%CI, 1.16-1.36]; p<0.001), time to initial CT (OR, 0.70 [95%CI, 0.58-0.86]; p<0.001), international normalized ratio (OR, 4.27 [95%CI, 1.40, 13.0]; p=0.011), and Rad-score (OR, 2.3 [95%CI, 1.6-3.3]; p<0.001). In the training cohort, the model achieved an AUC of 0.78, sensitivity of 0.83, and specificity of 0.66. In the testing cohort, AUC, sensitivity, and specificity were 0.71, 0.81, and 0.64, respectively. This radiomics-clinical model thus has the potential to predict IVH growth.


Preclinical Pharmacokinetics, Tissue Distribution, and Primary Safety Evaluation of Indo5, a Novel Selective Inhibitor of c-Met and Trks.

  • Teng Luo‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

The compound [3-(1H-benzimidazol-2-methylene)-5-(2-methylphenylaminosulfo)-2-indolone], known as Indo5, is a novel selective inhibitor of c-Met and Trks, and it is a promising anticancer candidate against hepatocellular carcinoma (HCC). Assessing the pharmacokinetic properties, tissue distribution, and toxicity of Indo5 is critical for its medicinal evaluation. A series of sensitive and specific liquid chromatography-tandem mass spectrometry methods were developed and validated to determine the concentration of Indo5 in rat plasma and tissue homogenates. These methods were then applied to investigate the pharmacokinetics and tissue distribution of Indo5 in rats. After intravenous injection of Indo5, the maximum concentration (Cmax) and the time at which Cmax was reached (Tmax) were 1,565.3 ± 286.2 ng/ml and 1 min, respectively. After oral administration, Cmax and Tmax were 54.7 ± 10.4 ng/ml and 2.0 ± 0.48 h, respectively. We calculated the absolute oral bioavailability of Indo5 in rats to be 1.59%. Following intravenous injection, the concentrations of Indo5 in various tissues showed the following order: liver > kidney ≈ heart > lung ≈ large intestine ≈ small intestine ≈ stomach > spleen > brain ≈ testes; hence, Indo5 distributed highest in the liver and could not cross the blood-brain or blood-testes barriers. Continuous injection of Indo5 for 21 days did not lead to liver injury, considering unchanged ALT and AST levels, normal histological architecture of the liver, and normal number and frequencies of immune cells in the liver, indicating a very low toxicity of Indo5 in vivo. Collectively, our findings provide a comprehensive understanding of the biological actions of Indo5 in vivo and further support its development as an antitumor treatment for HCC patients.


GATA-2 inhibits transforming growth factor-β signaling pathway through interaction with Smad4.

  • Xiao-Ming Dong‎ et al.
  • Cellular signalling‎
  • 2014‎

GATA-2, a member of zinc finger GATA transcription factor family, plays key role in the hematopoietic stem cells self-renewal and differentiation. The transforming growth factor-β (TGFβ) signaling pathway is a major signaling network that controls cell proliferation, differentiation and tumor suppression. Here we found that GATA-2 negatively regulated TGF-β signaling pathway in Smad4-dependent manner. GATA-2 specifically interacts with Smad4 with its N-terminal while the zinc finger domain of GATA-2 is essential for negative regulation of TGFβ. Although GATA-2 did not affect the phosphorylation of Smad2/3 and the complex Smad2/3/4 formation in response to TGFβ, the DNA binding activity of Smad4 was decreased significantly by GATA-2 overexpression. Overexpression of GATA-2 in K562 cells led to reduced TGFβ-induced erythroid differentiation while knockdown of GATA-2 enhanced TGFβ-induced erythroid differentiation. All these results suggest that GATA-2 is a novel negative regulator of TGFβ signal pathway.


Effects of THAP11 on erythroid differentiation and megakaryocytic differentiation of K562 cells.

  • Xiang-Zhen Kong‎ et al.
  • PloS one‎
  • 2014‎

Hematopoiesis is a complex process regulated by sets of transcription factors in a stage-specific and context-dependent manner. THAP11 is a transcription factor involved in cell growth, ES cell pluripotency, and embryogenesis. Here we showed that THAP11 was down-regulated during erythroid differentiation but up-regulated during megakaryocytic differentiation of cord blood CD34+ cells. Overexpression of THAP11 in K562 cells inhibited the erythroid differentiation induced by hemin with decreased numbers of benzidine-positive cells and decreased mRNA levels of α-globin (HBA) and glycophorin A (GPA), and knockdown of THAP11 enhanced the erythroid differentiation. Conversely, THAP11 overexpression accelerated the megakaryocytic differentiation induced by phorbol myristate acetate (PMA) with increased percentage of CD41+ cells, increased numbers of 4N cells, and elevated CD61 mRNA levels, and THAP11 knockdown attenuated the megakaryocytic differentiation. The expression levels of transcription factors such as c-Myc, c-Myb, GATA-2, and Fli1 were changed by THAP11 overexpression. In this way, our results suggested that THAP11 reversibly regulated erythroid and megakaryocytic differentiation.


Megakaryocytic differentiation of K562 cells induced by PMA reduced the activity of respiratory chain complex IV.

  • Rui Huang‎ et al.
  • PloS one‎
  • 2014‎

Mitochondria are involved in the regulation of cell differentiation processes, but its function changes and molecular mechanisms are not yet clear. In this study, we found that mitochondrial functions changed obviously when K562 cells were induced to megakaryocytic differentiation by phorbol 12-myristate 13-acetate (PMA). During the cell differentiation, the reactive oxygen species (ROS) level was increased, mitochondrial membrane potential declined and respiratory chain complex IV activity was decreased. Treatment with specific inhibitor of mitochondrial respiratory chain complex IV led to a significant inhibition in mitochondrial membrane potential and reduction of PMA-induced cell differentiation. However, treatment with cyclosporine A, a stabilization reagent of mitochondrial membrane potential, did not improve the down-regulation of mitochondrial respiratory chain complex IV induced by PMA. Furthermore, we found that the level of the complex IV core subunit COX3 and mitochondrial transport-related proteins Tim9 and Tim10 were decreased during the differentiation of K562 cells induced by PMA, suggesting an important role of these factors in mitochondrial functional changes. Our results suggest that changes in mitochondrial functions are involved in the PMA-induced K562 cell differentiation process, and the maintenance of the steady-state of mitochondrial functions plays a critical role in the regulation of cell differentiation.


A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth.

  • Teng Luo‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Human hepatocellular carcinoma (HCC) lacks effective curative therapy and there is an urgent need to develop a novel molecular-targeted therapy for HCC. Selective tyrosine kinase inhibitors have shown promise in treating cancers including HCC. Tyrosine kinases c-Met and Trks are potential therapeutic targets of HCC and strategies to interrupt c-Met and Trks cross-signaling may result in increased effects on HCC inhibition.


NLRP3 is dispensable for d-galactosamine/lipopolysaccharide-induced acute liver failure.

  • Wen Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

The nucleotide-binding domain and leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome is involved in various acute and chronic liver diseases, however, it is not clear whether NLRP3 contributes to d-Galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced acute liver failure (ALF). This study aims to investigate the role of NLRP3 inflammasome in D-GalN/LPS-induced fatal hepatitis. We found that Nlrp3-/- and WT mice showed similar mortality against a lethal dose of D-GalN/LPS treatment. Serum ALT and AST levels, as well as liver necrosis area and hepatocyte apoptosis, were not significantly different between Nlrp3-/- and WT mice at 6 h after D-GalN/LPS injection. Moreover, the numbers of intrahepatic F4/80+ cells and Ly6G+ cells were comparable in two genotype mice following D-GalN/LPS treatment. Besides, Nlrp3-/- mice had reduced IL-1β levels but similar TNF-α, IL-6, and MCP-1 levels compared with WT mice upon D-GalN/LPS administration. Our findings revealed that NLRP3 ablation does not protect mice from D-GalN/LPS-induced fatal hepatitis and has a marginal effect on intrahepatic inflammatory response upon D-GalN/LPS treatment. This suggests that NLRP3 inflammasome does not appear to be a major contributor to D-GalN/LPS-induced ALF.


Systematic profiling of SARS-CoV-2-specific IgG responses elicited by an inactivated virus vaccine identifies peptides and proteins for predicting vaccination efficacy.

  • Ming-Liang Ma‎ et al.
  • Cell discovery‎
  • 2021‎

One of the best ways to control COVID-19 is vaccination. Among the various SARS-CoV-2 vaccines, inactivated virus vaccines have been widely applied in China and many other countries. To understand the underlying protective mechanism of these vaccines, it is necessary to systematically analyze the humoral responses that are triggered. By utilizing a SARS-CoV-2 microarray with 21 proteins and 197 peptides that fully cover the spike protein, antibody response profiles of 59 serum samples collected from 32 volunteers immunized with the inactivated virus vaccine BBIBP-CorV were generated. For this set of samples, the microarray results correlated with the neutralization titers of the authentic virus, and two peptides (S1-5 and S2-22) were identified as potential biomarkers for assessing the effectiveness of vaccination. Moreover, by comparing immunized volunteers to convalescent and hospitalized COVID-19 patients, the N protein, NSP7, and S2-78 were identified as potential biomarkers for differentiating COVID-19 patients from individuals vaccinated with the inactivated SARS-CoV-2 vaccine. The comprehensive profile of humoral responses against the inactivated SARS-CoV-2 vaccine will facilitate a deeper understanding of the vaccine and provide potential biomarkers for inactivated virus vaccine-related applications.


Inhibition of microRNA-126 promotes the expression of Spred1 to inhibit angiogenesis in hepatocellular carcinoma after transcatheter arterial chemoembolization: in vivo study.

  • Jian-Song Ji‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

MicroRNA-126 (miR-126) has been found to promote angiogenesis, but the underlying mechanisms are still unclear. So, we conducted this study to explore the effect of miR-126 expression on angiogenesis in hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). The expression levels of miR-126 and sprouty-related, EVH1 domain containing protein (Spred)1 in surgically resected HCC tissue, HCC tissue with TACE + operation, and tumor-adjacent tissues were determined by quantitative real-time polymerase chain reaction. The expression levels of miR-126, Spred1, and vascular endothelial growth factor were found by quantitative real-time polymerase chain reaction and Western blot. The microvessel density (MVD) of tumor tissues was determined by immunohistochemical staining. The miR-126 and Spred1 expressions in HCC tissue with TACE + operation were elevated and decreased, respectively, as compared to those in surgically resected HCC tissues and tumor-adjacent tissues (all P<0.001), which indicated that the expression of Spred1 was negatively correlated with miR-126 (P<0.001, r=-0.6224). Based on the bioinformatics analysis and luciferase reporter gene activity detection, Spred1 was found to target miR-126 (P<0.001). Inhibition of miR-126 expression reduces the degree of weight loss and tumor size in TACE model rats. The MVD in TACE + operation group was increased compared to that in the control group; inhibition of miR-126 expression had a reversal effect, to a certain extent, on MVD increase after TACE (all P<0.05). Inhibition of miR-126 expression increased Spred1 expression and decreased vascular endothelial growth factor expression (P<0.01). In summary, this study unveiled the potential mechanism by which miR-126 regulates angiogenesis in HCC tissues through embolization treatment by targeting Spred1, and also showed that the feasibility of TACE with the miR-126 inhibitor has a certain value in the medical treatment of HCC.


Keratin 8 limits TLR-triggered inflammatory responses through inhibiting TRAF6 polyubiquitination.

  • Xiao-Ming Dong‎ et al.
  • Scientific reports‎
  • 2016‎

Toll-like receptors (TLRs) have critical roles in innate immunity and inflammation and the detailed mechanisms by which TLR signaling is fine tuned remain unclear. Keratin 8 (CK8) belongs to the type II keratin family and is the major compontent of the intermediate filaments of simple or single-layered epithelia. Here we report that down-regulation of CK8 in mice enhanced TLR-mediated responses, rendering mice more susceptible to lipopolysaccharide (LPS)-induced endotoxin shock and Escherichia coli-caused septic peritonitis with reduced survival, elevated levels of inflammation cytokines and more severe tissue damage. We found that CK8 suppressed TLR-induced nuclear factor (NF)-κB activation and interacted with the adaptor tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to prevent its polyubiquitination. Our findings demonstrate a novel role of CK8 in negative regulation of TLR/NF-κB signaling and highlight a previously unidentified nonclassical function for CK8 in limiting inflammatory responses.


Hepassocin is required for hepatic outgrowth during zebrafish hepatogenesis.

  • Ming Gao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Hepassocin (HPS) is a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage. In this paper, zebrafish were used to investigate the role of HPS in liver development.


eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer.

  • Min-Wu Chao‎ et al.
  • Oncotarget‎
  • 2015‎

eIF4E binding protein 1 (4E-BP1), is critical for cap-dependent and cap-independent translation. This study is the first to demonstrate that 4E-BP1 expression correlates with colorectal cancer (CRC) progression. Compared to its expression in normal colon epithelial cells, 4E-BP1 was upregulated in CRC cell lines and was detected in patient tumor tissues. Furthermore, high 4E-BP1 expression was statistically associated with poor prognosis. Hypoxia has been considered as an obstacle for cancer therapeutics. Our previous data showed that YXM110, a cryptopleurine derivative, exhibited anticancer activity via 4E-BP1 depletion. Here, we investigated whether YXM110 could inhibit protein synthesis under hypoxia. 4E-BP1 expression was notably decreased by YXM110 under hypoxic conditions, implying that cap-independent translation could be suppressed by YXM110. Moreover, YXM110 repressed hypoxia-inducible factor 1α (HIF-1α) expression, which resulted in decreased downstream vascular endothelial growth factor (VEGF) expression. These observations highlight 4E-BP1 as a useful biomarker and therapeutic target, indicating that YXM110 could be a potent CRC therapeutic drug.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: