Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.

  • Jian-Ping An‎ et al.
  • Frontiers in plant science‎
  • 2016‎

MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.


Development of a core collection for ramie by heuristic search based on SSR markers.

  • Ming-Bao Luan‎ et al.
  • Biotechnology, biotechnological equipment‎
  • 2014‎

There are more than 2000 ramie germplasms in the National Ramie Germplasm Nursery affiliated with the Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, China. As it is difficult to perform effective conservation, management, evaluation, and utilization of redundant genetic resources, it is necessary to construct a core collection by using molecular markers. In this study, a core collection of ramie consisting of 22 germplasms was constructed from 108 accessions by heuristic search based on 21 Simple Sequence Repeat (SSR) marker combinations. The results showed that there is a poor relationship between the core collection and the geographic distribution. The number of amplification bands for the core collection was the same as that for the entire collection. Shannon's index for three of the SSR primers (14%) and Nei's index for nine of the SSR primers (19%) were lower in the core collection than in the entire collection. The true core collection had wider genetic diversity compared with the random core collection. Collectively, the core collection constructed in this study is reliable and represents the genetic diversity of all the 108 accessions.


Δ8 -Tetrahydrocannabivarin has potent anti-nicotine effects in several rodent models of nicotine dependence.

  • Zheng-Xiong Xi‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties.


H3.3 impedes zygotic transcriptional program activated by Dux.

  • Qing Tian‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

During development, fertilization triggers totipotency establishment, featured by zygotic genome activation/embryonic genome activation (ZGA/EGA). Mouse embryonic stem cells (mESCs) occasionally cycle through a two-cell (2C)-like status with activated expression of Dux and its targeted ZGA genes. Here, we demonstrate that deficiency of histone variant H3.3 dramatically stimulates expression of ZGA genes in mESCs. Our analysis revealed that H3.3 directly associates with Dux locus and inhibits Dux expression, therefore it is an important upstream regulator of Dux. Our finding is further supported by transcriptome change in early mouse embryos with H3.3 knockdown. We suggest that proper H3.3 level in early embryos is important to orchestrate ZGA activity for totipotency establishment.


Genome-wide identification and stress response analysis of cyclophilin gene family in apple (Malus × domestica).

  • Zhi-Wen Qiao‎ et al.
  • BMC genomics‎
  • 2022‎

Cyclophilin (CYP) belongs to the immunophilin family and has peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the cis-trans isomerization process of proline residues. CYPs widely exist in eukaryotes and prokaryotes, and contain a conserved cyclophilin-like domain (CLD). Plant cyclophilins are widely involved in a range of biological processes including stress response, metabolic regulation, and growth and development.


Corydaline and l-tetrahydropalmatine attenuate morphine-induced conditioned place preference and the changes in dopamine D2 and GluA1 AMPA receptor expression in rats.

  • Wei-Ning Jiang‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Corydalis is a Chinese herb that has been used in China for hundreds of years for analgesic and other purposes. Corydaline and l-tetrahydropalmatine (l-THP) are the main active ingredients of Corydalis. This study was aimed to study the potential utility of corydaline and l-THP in the treatment of opioid abuse and addiction and explore the possible mechanisms underlying their pharmacological actions. Conditioned place preference (CPP) was used to evaluate the rewarding effects of morphine and Western-blot immunoreactive assays were used to evaluate morphine-induced changes in dopamine D2 receptor and GluA1 AMPA receptor and GluA2 AMPA receptor expression in the brain of rats. Systemic administration of corydaline (5 mg/kg, i.p.) or l-THP (1.25, 2.5,5 mg/kg) significantly inhibited the acquisition and expression of morphine-induced CPP in a dose-dependent manner. Corydaline or l-THP alone, at the same doses, failed to produce CPP or conditioned place aversion, and didn't affect locomotor activity. We then examined the expression of dopamine D2 receptor and GluA1 AMPA receptor and GluA2 AMPA receptor subunit expression in rats after acquisition of morphine-induced CPP. We found that repeated administration of morphine produced a significant reduction in dopamine D2 receptor expression in the prefrontal cortex, hippocamps, and striatum, while an increase in the striatal GluA1 AMPA receptor expression. Pretreatment with corydaline or l-THP blocked morphine-induced dopamine D2 receptor down-regulation and GluA1 AMPA receptor up-regulation in these brain regions. Corydaline and l-THP may have therapeutic potential in prevention and treatment of opioid abuse and addiction. The underlying mechanisms may be related to their antagonism on morphine-induced changes in dopamine and glutamate transmission in the brain.


Long Intergenic Non-protein Coding RNA 511 in Cancers.

  • Xiao-Fei Wang‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Background: Long intergenic non-protein coding RNA 511 (LINC00511) is upregulated in diverse cancers and involved in prognosis. This study aimed to evaluate the prognostic profile of LINC00511 in cancer patients. Methods: Published studies evaluating the prognosis of LINC00511 in patients with different cancers were identified from Medline, Embase, and Web of Science. Analysis of the association between LINC00511 and clinicopathological characteristics was conducted. GEPIA was used to validation and functional analysis and LnCeVar was used to get genomic variations. Results: We eventually included 9 studies, and the combined results showed LINC00511 was significantly associated with decreased OS (HR = 3.18, 95% CI = 2.29 ~ 4.42, P < 0.001) albeit with mild heterogeneity (I 2 = 58.1%, P h = 0.014), similarly in cancer type subgroups: breast cancer, digestive system cancer, and cervical cancer (all P < 0.001). There is no publication bias and meta-regression indicated follow-up time maybe heterogeneity of the results (P = 0.008). Additionally, LINC00511 appeared to be correlated with age, clinical stage, tumor size, and lymph node metastasis. Those findings were confirmed in GEPIA. Through LnCeVars, gene ontology and functional pathways were enriched, and dysregulated hallmarks and related ceRNA network of LINC00511 were disturbed. Conclusions: LINC00511 could be predictive of poor OS and lymph node metastasis in multiple cancers, in another word, LINC00511 serves as an unfavorable prognostic factor, and its mechanism is related to ceRNA.


Unraveling a genetic roadmap for improved taste in the domesticated apple.

  • Liao Liao‎ et al.
  • Molecular plant‎
  • 2021‎

Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.


Comparative transcriptomics reveals the selection patterns of domesticated ramie.

  • Kun-Yong Huang‎ et al.
  • Ecology and evolution‎
  • 2019‎

Although domestication has dramatically altered the phenotype, physiology, and life history of ramie (Boehmeria nivea) plants, few studies have investigated the effects of domestication on the structure and expression pattern of genes in this fiber crop. To investigate the selective pattern and genetic relationships among a cultivated variety of ramie (BNZ: B. nivea, ZZ1) and four wild species, BNT (B. nivea var. tenacissima), BNN (B. nivea var. nipononivea), BNW (B. nivea var. nivea), and BAN (B. nivea var. viridula), in the section Tilocnide, we performed an RNA sequencing analysis of these ramie species. The de novo assembly of the "all-ramie" transcriptome yielded 119,114 unigenes with an average length of 633 bp, and a total of 7,084 orthologous gene pairs were identified. The phylogenetic tree showed that the cultivar BNZ clustered with BAN in one group, BNW was closely related to BNT, and BNN formed a separate group. Introgression analysis indicated that gene flow occurred from BNZ to BNN and BAN, and between BAN and BNN. Among these orthologs, 2,425 and 269 genes underwent significant purifying and positive selection, respectively. For these positively selected genes, oxidation-reduction process (GO:0055114) and stress response pathways (GO:0006950) were enriched, indicating that modulation of the cellular redox status was important during both ramie fiber evolution and improvement. Two genes related to the suppression of flowering and one gene annotated as a flowering-promoting factor were subjected to positive selection, probably caused by human manipulation. Additionally, five genes were homologs of those involved in abiotic stress tolerance and disease resistance, with higher expression levels in the cultivar BNZ than in the wild species. Collectively, the results of this study indicated that domestication has resulted in the upregulation of many genes involved in the abiotic and biotic stress responses, fiber yield, and plant growth of ramie.


Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis.

  • Peng Guan‎ et al.
  • Life sciences‎
  • 2019‎

Hydrogen gas (H2) has a diversity of effects such as anti-apoptotic, anti-inflammatory and anti-oxidative properties. However, molecular mechanism underlying the potential effect of H2 on chronic intermittent hypoxia (CIH) induced renal injury remains obscure.


β-Caryophyllene, a dietary terpenoid, inhibits nicotine taking and nicotine seeking in rodents.

  • Yi He‎ et al.
  • British journal of pharmacology‎
  • 2020‎

β-Caryophyllene (BCP) is a plant-derived terpenoid used as a food additive for many decades. Recent studies indicate that BCP is a cannabinoid CB2 receptor agonist with medical benefits for a number of human diseases. However, little is known about its therapeutic potential for drug abuse and addiction.


Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway.

  • Mei Wang‎ et al.
  • Cell death & disease‎
  • 2020‎

Autophagy and apoptosis are two major modes of cell death. A balanced interplay between both is vital for phagocytic clearance of apoptotic testicular cells. Here, generating a SD rats model-treated with cadmium (Cd) to mimic environmental exposure on human, we show that autophagy and apoptosis present synchronous change trends in Cd-induced testicular injury/self-recovery. Further, the cross-talk of autophagy and apoptosis is investigated in four testicular cell lines (GC-1/GC-2/TM3/TM4 cells) respectively. Results reveal that Cd-exposure for five consecutive weeks induces reproductive toxicity in male rats. After one cycle of spermatogenesis within 8 weeks without Cd, toxic effects are ameliorated significantly. In vitro, we find that PI3K inhibitor 3-MA regulates apoptosis by inhibiting autophagy with mTOR-independent pathway in Cd-treated testicular cells. Conclusively, cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by Cd via PI3K with mTOR-independent pathway.


Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple.

  • Jian-Ping An‎ et al.
  • Journal of experimental botany‎
  • 2020‎

Teosinte branched1/cycloidea/proliferating (TCP) transcription factors play a broad role in plant growth and development, but their involvement in the regulation of anthocyanin biosynthesis is currently unclear. In this study, anthocyanin biosynthesis induced by different light intensities in apple (Malus domestica) was found to be largely dependent on the functions of the MdMYB1 and MdTCP46 transcription factors. The expression of MdTCP46 was responsive to high light intensity, and under these conditions it promoted anthocyanin biosynthesis by direct interactions with MdMYB1 that enhanced the binding of the latter to its target genes. MdTCP46 also interacted with a bric-a-brac/tramtrack/broad (BTB) protein, MdBT2, that is responsive to high light intensity, which ubiquitinated MdTCP46 and mediated its degradation via the 26S proteasome pathway. Our results demonstrate that the dynamic regulatory module MdBT2-MdTCP46-MdMYB1 plays a key role in modulating anthocyanin biosynthesis at different light intensities in apple, and provides new insights into the post-transcriptional regulation of TCP proteins.


The prognostic value of interleukin-17 in lung cancer: A systematic review with meta-analysis based on Chinese patients.

  • Xiao-Fei Wang‎ et al.
  • PloS one‎
  • 2017‎

Interleukin-17 (IL-17) plays an important role in cancer progression. Previous studies remained controversial regarding the correlation between IL-17 expression and lung cancer (LC) prognosis. To comprehensively and quantitatively summarize the prognostic value of IL-17 expression in LC patients, a systematic review and meta-analysis were performed.


Nitrate-inducible MdBT2 acts as a restriction factor to limit apple necrotic mosaic virus genome replication in Malus domestica.

  • Zhenlu Zhang‎ et al.
  • Molecular plant pathology‎
  • 2022‎

Apple necrotic mosaic virus (ApNMV) is highly associated with the occurrence of apple mosaic disease in China. However, ApNMV-host interactions and defence mechanisms of host plants against this virus are poorly studied. Here, we report that nitrate treatment restrains ApNMV genomic RNA accumulation by destabilizing viral replication protein 1a through the MdBT2-mediated ubiquitin-proteasome pathway. MdBT2, a nitrate-responsive BTB/TAZ domain-containing protein, was identified in a yeast two-hybrid screen of an apple cDNA library using viral protein 1a as bait, and 1a was further confirmed to interact with MdBT2 both in vivo and in vitro. It was further verified that MdBT2 promoted the ubiquitination and degradation of viral protein 1a through the ubiquitin-proteasome pathway in an MdCUL3A-independent manner. Viral genomic RNA accumulation was reduced in MdBT2-overexpressing transgenic apple leaves but enhanced in MdBT2-antisense leaves compared to the wild type. Moreover, MdBT2 was found to interfere with the interaction between viral replication proteins 1a and 2apol by competitively interacting with 1a. Taken together, our results demonstrate that nitrate-inducible MdBT2 functions as a limiting factor in ApNMV viral RNA accumulation by promoting the ubiquitination and degradation of viral protein 1a and interfering with interactions between viral replication proteins.


The apple MdCOP1-interacting protein 1 negatively regulates hypocotyl elongation and anthocyanin biosynthesis.

  • Hui Kang‎ et al.
  • BMC plant biology‎
  • 2021‎

In plants, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is a key negative regulator in photoperiod response. However, the biological function of COP1-interacting protein 1 (CIP1) and the regulatory mechanism of the CIP1-COP1 interaction are not fully understood.


circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455-5p to activate CXCL12/CXCR4 signaling.

  • Xun Zheng‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Medullary thyroid cancer (MTC) represents 13.4 % of all thyroid cancers-related deaths. The treatments for MTC are very limited especially for patients with distal metastasis. Therefore, it is critical to understand the mechanisms of MTC to pursue novel therapeutic avenues. Here, we studied the function of circPVT1/miR-455-5p in MTC.


The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation.

  • Yi-Ran Ren‎ et al.
  • Horticulture research‎
  • 2021‎

Nitrogen is an important factor that affects plant anthocyanin accumulation. In apple, the nitrate-responsive BTB/TAZ protein MdBT2 negatively regulates anthocyanin biosynthesis. In this study, we found that MdBT2 undergoes posttranslational modifications in response to nitrate deficiency. Yeast two-hybrid, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with MdGRF11, a 14-3-3 protein; 14-3-3 proteins compose a family of highly conserved phosphopeptide-binding proteins involved in multiple physiological and biological processes. The interaction of MdGRF11 negatively regulated the stability of the MdBT2 protein via a 26S proteasome-dependent pathway, which increased the abundance of MdMYB1 proteins to activate the expression of anthocyanin biosynthesis-related genes. Taken together, the results demonstrate the critical role of 14-3-3 proteins in the regulation of nitrate deficiency-induced anthocyanin accumulation. Our results provide a novel avenue to elucidate the mechanism underlying the induction of anthocyanin biosynthesis in response to nitrate deficiency.


Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients.

  • Xiao-Fei Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.


Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain).

  • Wen-Feng Li‎ et al.
  • Metabolites‎
  • 2021‎

Pubertal molt is a vital stage in the cultivation of mature female crabs in the aquacultural industry of Scylla paramamosain. Since fasting occurs during molting, which requires a large supply of energy, internal energy reserves are critical. However, the dynamics of energy supply during pubertal molt is not clear. This study focuses on the variations of carbohydrates and lipids in serum during the pubertal molt of S. paramamosain via a metabolomics approach. Eleven lipid or carbohydrate metabolic pathways were significantly influenced postmolt. A remarkable decrease in carbohydrates in serum suggested that free sugars were consumed for energy. A significant decrease in glucose and alpha-d-glucosamine 1-phosphate showed that chitin synthesis exhausted glycogen, resulting in insufficient glucose supply. An increase in l-carnitine and acetylcarnitine, and a significant decrease in 15 fatty acyls and 8 glycerophosphocholines in serum indicated that carnitine shuttle was stimulated, and β-oxidation was upregulated postmolt. In addition, astaxanthin, ponasterone A, and riboflavin in serum were significantly decreased postmolt. Eleven potential metabolite biomarkers were identified for pubertal molt. Taken together, carbohydrates and lipids were possibly major energy reserves in pubertal molt. This study suggests that an increase in carbohydrate and lipid levels in crab feed may alleviate the effects of fasting during molt and improve farm productivity in mature female crabs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: