Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 631 papers

Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease.

  • Tingting Zhou‎ et al.
  • Neuropharmacology‎
  • 2016‎

Ginsenoside Rg1 (Rg1) is a major bioactive ingredient in Panax ginseng that has low toxicity and has been shown to have neuroprotective effects. The objectives of the present study were to explore the potential of the application of Rg1 for the treatment of Parkinson's disease (PD) and to determine whether its neuroprotective effects are exerted through the Wnt/β-catenin signaling pathway by using in vivo and in vitro models of PD. In the in vivo study, Rg1 treatment ameliorated the behavioral deficits of "Pole test", and reduced dopaminergic cell loss that were induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) in a dose-dependent manner in an in vivo model of PD. In the in vitro study, cell viability was increased and cell apoptosis induced by 1-methyl-4-phenylpyridinium(MPP+) was decreased by Rg1 pretreatment. Rg1 induced protective effects on the protein and mRNA expression levels of markers of the Wnt/β-catenin signaling pathway in both the in vivo and the in vitro studies, and these neuroprotective effects were blocked by DKK1 in the in vitro study. Our results provide evidence that Rg1 has neuroprotective effects in both in vivo and in vitro PD models, and these effects act through the Wnt/β-catenin signaling pathway. Taken together, these results indicate that Rg1 may exert therapeutic effects on PD via the Wnt/β-catenin signaling pathway and may therefore provide a novel approach for the treatment of PD.


High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism.

  • Ying Li‎ et al.
  • Scientific reports‎
  • 2016‎

3-Hydroxypropionic acid (3-HP) is an important platform chemical proposed by the United States Department of Energy. 3-HP can be converted to a series of bulk chemicals. Biological production of 3-HP has made great progress in recent years. However, low yield of 3-HP restricts its commercialization. In this study, systematic optimization was conducted towards high-yield production of 3-HP in Klebsiella pneumoniae. We first investigated appropriate promoters for the key enzyme (aldehyde dehydrogenase, ALDH) in 3-HP biosynthesis, and found that IPTG-inducible tac promoter enabled overexpression of an endogenous ALDH (PuuC) in K. pneumoniae. We optimized the metabolic flux and found that blocking the synthesis of lactic acid and acetic acid significantly increased the production of 3-HP. Additionally, fermentation conditions were optimized and scaled-up cultivation were investigated. The highest 3-HP titer was observed at 83.8 g/L with a high conversion ratio of 54% on substrate glycerol. Furthermore, a flux distribution model of glycerol metabolism in K. pneumoniae was proposed based on in silico analysis. To our knowledge, this is the highest 3-HP production in K. pneumoniae. This work has significantly advanced biological production of 3-HP from renewable carbon sources.


Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells.

  • Ling Dong‎ et al.
  • Oncotarget‎
  • 2016‎

Programmed death-1 (PD-1) /programmed death-ligand 1 (PD-L1) engagement usually leads to diminished antitumor T-cell responses, which mediates the immune escape of tumor cells. However, little is known whether PD-1/PD-L1 could directly activates intracellular oncogenic signaling pathways in tumor cells. The purpose of this study is to investigate whether intracellular AKT/mTOR signaling could be directly activated by PD-1/PD-L1 during the malignant progression in diffuse large B-cell lymphoma (DLBCL). Detection of the expression of PD-L1 and p-AKT by immunohistochemistry (IHC) showed that both proteins were overexpressed in 54% and 48% DLBCL cases, respectively. Spearman test showed that PD-L1 expression was correlated with p-AKT expression (R=0.244, χ2=5.962; P=0.017) and the expression of PD-L1 and p-AKT were also correlated with clinic-pathological characteristics. In addition, survival analysis showed that DLBCL patients who co-expressed PD-L1 and p-AKT had significantly poorer outcome than patients with single positive or both negative expression (P<0.05). In vitro, total PD-L1 and membrane PD-L1 (mPD-L1) proteins were overexpressed in five DLBCL cell lines by western blot and flow cytometry. We observed that AKT/mTOR pathway was activated in DLBCL cells after stimulated with human recombination PD-1/Fc. Taken together, these results suggested that the combination of PD-1/PD-L1 antibodies and AKT/mTOR inhibitor might be a promising and novel therapeutic approach for DLBCL in the future.


Late Pleistocene climate change promoted divergence between Picea asperata and P. crassifolia on the Qinghai-Tibet Plateau through recent bottlenecks.

  • Hao Bi‎ et al.
  • Ecology and evolution‎
  • 2016‎

Divergence during the early stage of speciation can be driven by a population bottleneck via reduced gene flow and enhanced lineage sorting. In this study, we aimed to examine whether such bottlenecks occurred during the initial speciation of two closely related spruce species Picea asperata and P. crassifolia occurring on the Qinghai-Tibet Plateau (QTP). We analyzed sequences of three chloroplast, two mitochondrial DNA fragments and a further 13 nuclear loci from 216 individuals of the two species. Both species showed a low level of genetic diversity in contrast to other congeners occurring in the QTP and adjacent regions. The estimated population sizes of P. asperata and P. crassifolia are less than the ancestral population size before splitting. These results together with multiple statistical tests (Tajima's D, Fu and Li's D* and F*) suggest that these two species underwent recent bottlenecks. Based on approximate Bayesian computation (ABC), we also determined that the period of the population shrinkage was consistent with the interspecific divergence during the late Pleistocene. The reduced population sizes and the divergent selection may together have triggered the initial divergence under high gene flow between these two species. Our results therefore highlight the importance of climatic oscillations during the late Pleistocene in promoting speciation through changing demographic sizes of the ancestral species on the QTP and in adjacent regions.


Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough.

  • Zhan-Wei Hu‎ et al.
  • Chinese medical journal‎
  • 2016‎

The effects of near-road pollution on lung function in China have not been well studied. We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function, airway inflammation, and respiratory symptoms.


Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma.

  • Zifeng Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Mechanism for the malignant phenotype of nasopharyngeal carcinoma (NPC) remains poorly understood. Epstein-Barr virus (EBV) consistently appears in nearly all malignant NPC patient samples, suggesting the strong etiological link between the malignant phenotype and EBV infection. Here we found that the EBV-encoded latent membrane protein (LMP1) enhanced cell growth, motility, invasion and xenograft tumor growth of NPC. RNA-seq profiling analysis of LMP1-positive NPC patient tissues indicated that widespread gene repression contributed to malignant phenotype of NPC. The transcription factor binding site (TFBS) enrichment analysis indicated a subset of transcription factors including ATOH8, a novel transcript factor which belongs to the basic helix-loop-helix (bHLH) gene family inversely enriched in promoters of up-regulated genes and down-regulated genes. Importantly, the expression of ATOH8 was suppressed in both immortalized normal nasopharyngeal epithelial cells (NPEC) and NPC cells with LMP1 overexpression. The Real-Time PCR and Western Blot assays indicated that ATOH8 decreased expression in NPC cell lines and patient samples. Moreover, by gain- or loss-of-function assays, we demonstrated that ATOH8 inhibition promoted malignant phenotype, whereas ATOH8 restoration reversed malignant phenotype of NPC. Finally, we demonstrated that LMP1 inhibited ATOH8 expression by epigenetically impairing the occupancy of activating H3K4me3 and enhancing the occupancy of repressive H3K27me3 on ATOH8 promoter. Collectively, our study uncovered the occurrence of malignant phenotype of NPC induced by EBV infection and characterized a novel bHLH transcription factor ATOH8 as a new downstream target of LMP1.


Extracellular interactions and ligand degradation shape the nodal morphogen gradient.

  • Yin Wang‎ et al.
  • eLife‎
  • 2016‎

The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient.


Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration.

  • Bu-er Wang‎ et al.
  • Stem cell reports‎
  • 2015‎

The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5(+) population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5(+) cells and their progeny are primarily luminal. Lgr5(+) castration-resistant cells are long lived and upon regeneration, both luminal Lgr5(+) cells and basal Lgr5(+) cells expand. Moreover, single Lgr5(+) cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5(+) cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5(+) cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5(+) cells during prostatic regeneration, and identify an Lgr5(+) adult stem cell population in the prostate.


The effect of enterovirus 71 immunization on neuropathogenesis and protein expression profiles in the thalamus of infected rhesus neonates.

  • Huicheng Chen‎ et al.
  • Virology‎
  • 2012‎

Enterovirus 71 (EV71) is a major pathogen that causes hand-foot-mouth disease (HFMD). Our previous studies have demonstrated that the complete process of pathogenesis, which may include tissue damage induced by host inflammatory responses and direct tissue damage caused by viral infection, can be observed in the central nervous system (CNS) of animals infected in the laboratory with EV71. Based on these observations, the neuropathogenesis and protein expression profiles in the thalamic tissues of EV71-infected animals were further analyzed in the present study. Changes in protein expression profiles following immunization with the inactivated EV71 vaccine followed by virus challenge were observed and evaluated, and their physiological roles in viral pathogenesis are discussed. Taken together, the results of these experiments provide evidence regarding the neuropathogenesis and molecular mechanisms associated with EV71 infection and identify several protein indicators of pathogenic changes during viral infection.


Vascular Adventitia Calcification and Its Underlying Mechanism.

  • Na Li‎ et al.
  • PloS one‎
  • 2015‎

Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD) for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCs)were obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml) + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.


Integrative meta-analysis of differentially expressed genes in osteoarthritis using microarray technology.

  • Xi Wang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to identify differentially expressed (DE) genes in patients with osteoarthritis (OA), and biological processes associated with changes in gene expression that occur in this disease. Using the INMEX (integrative meta‑analysis of expression data) software tool, a meta‑analysis of publicly available microarray Gene Expression Omnibus (GEO) datasets of OA was performed. Gene ontology (GO) enrichment analysis was performed in order to detect enriched functional attributes based on gene‑associated GO terms. Three GEO datasets, containing 137 patients with OA and 52 healthy controls, were included in the meta‑analysis. The analysis identified 85 genes that were consistently differentially expressed in OA (30 genes were upregulated and 55 genes were downregulated). The upregulated gene with the lowest P‑value (P=5.36E‑07) was S‑phase kinase‑associated protein 2, E3 ubiquitin protein ligase (SKP2). The downregulated gene with the lowest P‑value (P=4.42E‑09) was Proline rich 5 like (PRR5L). Among the 210 GO terms that were associated with the set of DE genes, the most significant two enrichments were observed in the GO categories of 'Immune response', with a P‑value of 0.000129438, and 'Immune effectors process', with a P‑value of 0.000288619. The current meta‑analysis identified genes that were consistently DE in OA, in addition to biological pathways associated with changes in gene expression that occur during OA, which may provide insight into the molecular mechanisms underlying the pathogenesis of this disease.


OxLDL promotes lymphangiogenesis and lymphatic metastasis in gastric cancer by upregulating VEGF‑C expression and secretion.

  • Caiqi Ma‎ et al.
  • International journal of oncology‎
  • 2019‎

Gastric cancer is one of the most malignant tumor types, and its metastasis is a notable cause of mortality. Among the methods of tumor metastasis, lymphatic metastasis is the predominant one in gastric cancer. A previous study reported that the plasma oxidized low‑density lipoprotein (oxLDL) is the risk factor associated with the development of tumors in patients with abnormal lipid metabolism, but the influence of plasma oxLDL in the lymphatic metastasis of gastric cancer remains unclear. In the present study, the concentration of plasma oxLDL from patients with gastric cancer was detected with an ELISA kit, and the lymphatic vessel density in gastric cancer tissues was determined by D2‑40 staining. The correlation analysis of oxLDL concentration and lymphatic vessel density demonstrated that plasma oxLDL was positively correlated with lymphatic metastasis in patients with gastric cancer. Subsequently, the popliteal lymph node metastasis animal experiment with nude mice confirmed that oxLDL could promote the lymphatic metastasis of gastric cancer. Following this, the western blotting and ELISA data demonstrated that oxLDL promoted the expression and secretion of vascular endothelia growth factor (VEGF)‑C in gastric cancer cell lines. Finally, blocking the lectin‑like oxLDL‑1 (LOX‑1) receptor, a specific receptor for oxLDL, and the nuclear factor (NF)‑κB signaling pathway following oxLDL (50 µg/ml) treatment in HGC‑27 cells revealed that oxLDL could activate the NF‑κB signaling pathway mediated by LOX‑1, with subsequent upregulation of VEGF‑C expression, and secretion in and from gastric cancer cells, and finally that it could promote the lymphatic metastasis of gastric cancer. These data indicate the association between the plasma oxLDL and the lymphatic metastasis of gastric cancer, and indicate that oxLDL elimination may be a potential therapeutic target for the prevention and intervention of early lymph node metastasis in gastric cancer.


Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference.

  • Shujuan Yan‎ et al.
  • Genes & diseases‎
  • 2018‎

Mesenchymal stem cells (MSCs) are multipotent stem cells and capable of differentiating into multiple cell types including osteoblastic, chondrogenic and adipogenic lineages. We previously identified BMP9 as one of the most potent BMPs that induce osteoblastic differentiation of MSCs although exact molecular mechanism through which BMP9 regulates osteogenic differentiation remains to be fully understood. Here, we seek to develop a recombinant adenovirus system to optimally silence mouse BMP9 and then characterize the important role of BMP9 in osteogenic differentiation of MSCs. Using two different siRNA bioinformatic prediction programs, we design five siRNAs targeting mouse BMP9 (or simB9), which are expressed under the control of the converging H1 and U6 promoters in recombinant adenovirus vectors. We demonstrate that two of the five siRNAs, simB9-4 and simB9-7, exhibit the highest efficiency on silencing exogenous mouse BMP9 in MSCs. Furthermore, simB9-4 and simB9-7 act synergistically in inhibiting BMP9-induced expression of osteogenic markers, matrix mineralization and ectopic bone formation from MSCs. Thus, our findings demonstrate the important role of BMP9 in osteogenic differentiation of MSCs. The characterized simB9 siRNAs may be used as an important tool to investigate the molecular mechanism behind BMP9 osteogenic signaling. Our results also indicate that recombinant adenovirus-mediated expression of siRNAs is efficient and sustained, and thus may be used as an effective delivery vehicle of siRNA therapeutics.


Gene expression profiles analysis identifies a novel two-gene signature to predict overall survival in diffuse large B-cell lymphoma.

  • Chengtao Sun‎ et al.
  • Bioscience reports‎
  • 2019‎

Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, however, specific tumor-associated genes and signaling pathways are yet to be deciphered. Differentially expressed genes (DEGs) were computed based on gene expression profiles from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation, protein-protein interaction (PPI) network analysis as well as survival analysis. Seventy-four up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, majority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal transition (EMT) pathways. Six hub genes including CDC20, MELK, PBK, prostaglandin D2 synthase (PTGDS), PCNA, and CDK1 were selected using the Molecular Complex Detection (MCODE). CDC20 and PTGDS were able to predict overall survival (OS) in TCGA DLBC and in an additional independent cohort GSE31312. Furthermore, CDC20 DNA methylation negatively regulated CDC20 expression and was able to predict OS in DLBCL. A two-gene panel consisting of CDC20 and PTGDS had a better prognostic value compared with CDC20 or PTGDS alone in the TCGA cohort (P=0.026 and 0.039). Overall, the present study identified a set of novel genes and pathways that may play a significant role in the initiation and progression of DLBCL. In addition, CDC20 and PTGDS will provide useful guidance for therapeutic applications.


Biological Analysis of Gene Expression and Clinical Variables Suggest FZD1 as a Novel Biomarker for Patients with Kashin-Beck Disease, an Endemic Osteoarthritis in China.

  • Xi Wang‎ et al.
  • Disease markers‎
  • 2019‎

Clinical variables contribute to the severity of Kashin-Beck disease (KBD). However, it is unclear if there is a correlation between gene expression and clinical variables. Peripheral blood samples were collected from 100 patients with KBD and 100 healthy controls from KBD-endemic areas to identify differentially expressed genes in KBD. Correlation analysis and multiple logistic regression analysis were performed using gene expression and clinical parameters. Immunohistochemistry (IHC) was used to detect the expression of related proteins in articular cartilage tissues. Thirty-nine differentially expressed genes were identified in patients with KBD. Nine differentially expressed genes were correlated with the metacarpal length/metacarpal breadth index. FZD1 was identified as having statistical significance in establishing the regression model of clinical parameters and gene expression. FZD1 expression levels were remarkably reduced in patients with KBD. Our results indicate that FZD1 could be involved in the pathological process of phalanges tuberositas and brachydactylia and may provide new insight into the pathogenesis of articular cartilage destruction observed in patients with KBD.


Irinotecan plus S-1 versus S-1 in patients with previously treated recurrent or metastatic esophageal cancer (ESWN 01): a prospective randomized, multicenter, open-labeled phase 3 trial.

  • Jing Huang‎ et al.
  • Cancer communications (London, England)‎
  • 2019‎

The benefit of systemic treatments in esophageal squamous cell carcinoma (ESCC) which has progressed after chemotherapy is still uncertain and optimal regimens based on randomized trials have not yet been established. We aimed to compare the efficacy of irinotecan plus S-1 with S-1 monotherapy in recurrent or metastatic ESCC patients who had resistance to platinum- or taxane-based chemotherapy.


Pretreatment with neuregulin-1 improves cardiac electrophysiological properties in a rat model of myocardial infarction.

  • Panpan Rao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Neuregulin-1 (NRG-1) is considered to be a potential therapeutic agent for cardiovascular diseases due to its diverse protective effects. The aim of the present study was to investigate the effect of NRG-1 on cardiac electrophysiology in rats with myocardial infarction (MI). The rats were randomly divided into three groups: The sham operation group (SO; n=8); MI group (n=8); and the MI with recombinant human NRG (rhNRG)-1 administration group (NRG-1 group; 10 µg/kg; n=8). A rat MI model was established via ligation of the left anterior descending coronary artery. The rats in the NRG-1 group received a 10 µg/kg rhNRG-1 injection through the tail vein 30 min prior to ligation. Following 24 h of intervention, the field potential (FP) parameters, including the interspike interval (ISI), field potential duration (FPD), FPrise, FPmin, FPmax and conduction velocity (CV), were measured using microelectrode array technology. Subsequently, burst pacing was performed to assess ventricular arrhythmia (VA) susceptibility in the left ventricle. FP parameters in the MI group were significantly different when compared with those observed in the SO group. ISI, FPD, FPrise and FPmax in the infarct, peri-infarct and normal zones, as well as the CV of the infarct and peri-infarct zones, were all significantly decreased, and FPmin in the normal zone was increased (P<0.05). However, when compared with the MI group, NRG-1 prolonged the ISI and FPD in the 3 zones, and increased FPrise in the infarct zone, FPmax in the normal zone and CV in the peri-infarct zone; it also decreased FPmin in the normal zone (P<0.05). Furthermore, the incidence of VA was significantly reduced in the NRG-1 group when compared with the MI group (P<0.05). In conclusion, NRG-1 improved cardiac electrophysiological properties and reduced VA susceptibility in acute MI.


Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity.

  • Hong-Yi Zhao‎ et al.
  • Chinese medical journal‎
  • 2017‎

Shensong Yangxin (SSYX), a traditional Chinese herbal medicine, has long been used clinically to treat arrhythmias in China. However, the mechanism of SSYX on atrial fibrillation (AF) is unknown. In this study, we tested the hypothesis that the effect of SSYX on the progression of paroxysmal AF is correlated with the regulation of autonomic nerve activity.


Dicer affects cisplatin‑mediated apoptosis in epithelial ovarian cancer cells.

  • Xi Wang‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Dicer is an essential enzyme that processes micro (mi)-RNA precursors into mature miRNAs, and serves a critical role in cancer development and progression by regulating gene expression. However, the role of Dicer in cisplatin‑mediated apoptosis and chemotherapy resistance in epithelial ovarian cancer (EOC) cells is poorly understood. In the present study, Dicer was expressed at low levels in cisplatin‑resistant A2780 cells when compared with parental cells. In addition, knocking down Dicer using short hairpin RNA decreased the sensitivity of A2780 and CAOV3 cells to cisplatin. Furthermore, downregulating Dicer significantly inhibited cisplatin‑induced apoptosis in ovarian cancer cells, and decreased the levels of proteins involved in apoptosis signaling pathways, including P73, P63, P53, caspase‑9 and caspase‑3. These findings indicated that Dicer may be a promising target for overcoming drug resistance in ovarian cancer.


The efficacy and safety of anti-CD19/CD20 chimeric antigen receptor- T cells immunotherapy in relapsed or refractory B-cell malignancies:a meta-analysis.

  • Hui Zhou‎ et al.
  • BMC cancer‎
  • 2018‎

Chimeric antigen receptor T (CAR T) cells immunotherapy is rapidly developed in treating cancers, especially relapsed or refractory B-cell malignancies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: