Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Targeted resequencing and systematic in vivo functional testing identifies rare variants in MEIS1 as significant contributors to restless legs syndrome.

  • Eva C Schulte‎ et al.
  • American journal of human genetics‎
  • 2014‎

Restless legs syndrome (RLS) is a common neurologic condition characterized by nocturnal dysesthesias and an urge to move, affecting the legs. RLS is a complex trait, for which genome-wide association studies (GWASs) have identified common susceptibility alleles of modest (OR 1.2-1.7) risk at six genomic loci. Among these, variants in MEIS1 have emerged as the largest risk factors for RLS, suggesting that perturbations in this transcription factor might be causally related to RLS susceptibility. To establish this causality, direction of effect, and total genetic burden of MEIS1, we interrogated 188 case subjects and 182 control subjects for rare alleles not captured by previous GWASs, followed by genotyping of ∼3,000 case subjects and 3,000 control subjects, and concluded with systematic functionalization of all discovered variants using a previously established in vivo model of neurogenesis. We observed a significant excess of rare MEIS1 variants in individuals with RLS. Subsequent assessment of all nonsynonymous variants by in vivo complementation revealed an excess of loss-of-function alleles in individuals with RLS. Strikingly, these alleles compromised the function of the canonical MEIS1 splice isoform but were irrelevant to an isoform known to utilize an alternative 3' sequence. Our data link MEIS1 loss of function to the etiopathology of RLS, highlight how combined sequencing and systematic functional annotation of rare variation at GWAS loci can detect risk burden, and offer a plausible explanation for the specificity of phenotypic expressivity of loss-of-function alleles at a locus broadly necessary for neurogenesis and neurodevelopment.


Diesterified derivatives of 5-iodo-2'-deoxyuridine as cerebral tumor tracers.

  • Thomas W Rösler‎ et al.
  • PloS one‎
  • 2014‎

With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2'-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3',5'-di-O-acetyl-2'-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3',5'-di-O-pivaloyl-2'-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31-47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.


Effect of long-term treatment with pramipexole or levodopa on presynaptic markers assessed by longitudinal [123I]FP-CIT SPECT and histochemistry.

  • Candan Depboylu‎ et al.
  • NeuroImage‎
  • 2013‎

A previous clinical trial studied the effect of long-term treatment with levodopa (LD) or the dopamine agonist pramipexole (PPX) on disease progression in Parkinson disease using SPECT with the dopamine transporter (DAT)-radioligand [(123)I]β-CIT as surrogate marker. [(123)I]β-CIT binding declined to significantly lower levels in patients receiving LD compared to PPX. However, the interpretation of this difference as LD-induced neurotoxicity, PPX-induced neuroprotection/-regeneration, or only drug-induced regulatory changes of DAT-availability remained controversial. To address this question experimentally, we induced a subtotal lesion of the substantia nigra in mice by bilateral injection of the neurotoxin 6-hydroxydopamine. After 4 weeks, mice were treated for 20 weeks orally with LD (100mg/kg/day) or PPX (3mg/kg/day), or water (vehicle) only. The integrity of nigrostriatal projections was assessed by repeated [(123)I]FP-CIT SPECT in vivo and by immunostaining for DAT and the dopamine-synthesizing enzyme tyrosine hydroxylase (TH) after sacrifice. In sham-lesioned mice, we found that both LD and PPX treatment significantly decreased the striatal FP-CIT binding (LD: -21%; PPX: -14%) and TH-immunoreactivity (LD: -42%; PPX: -45%), but increased DAT-immunoreactivity (LD: +42%; PPX: +33%) compared to controls without dopaminergic treatment. In 6-hydroxydopamine-lesioned mice, however, neither LD nor PPX significantly influenced the stably reduced FP-CIT SPECT signal (LD: -66%; PPX: -66%; controls -66%), TH-immunoreactivity (LD: -70%; PPX: -72%; controls: -77%) and DAT-immunoreactivity (LD: -70%; PPX: -75%; controls: -75%) in the striatum or the number of TH-positive cells in the substantia nigra (LD: -88%; PPX: -88%; controls: -86%), compared to lesioned mice without dopaminergic treatment. In conclusion, chronic dopaminergic stimulation with LD or PPX induced similar adaptive presynaptic changes in healthy mice, but no discernible changes in severely lesioned mice. These findings allow to more reliably interpret the results from clinical trials using neuroimaging of DAT as surrogate parameter.


Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

  • Daniel Alvarez-Fischer‎ et al.
  • PloS one‎
  • 2013‎

Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.


A concerted action of L- and T-type Ca(2+) channels regulates locus coeruleus pacemaking.

  • Lina A Matschke‎ et al.
  • Molecular and cellular neurosciences‎
  • 2015‎

Dysfunction of noradrenergic locus coeruleus (LC) neurons is involved in psychiatric and neurodegenerative diseases and is an early hallmark of Parkinson's disease (PD). The analysis of ion channels underlying the autonomous electrical activity of LC neurons, which is ultimately coupled to cell survival signaling pathways, can lead to a better understanding of the vulnerability of these neurons. In LC neurons somatodendritic Ca(2+) oscillations, mediated by L-type Ca(2+) channels, accompany spontaneous spiking and are linked to mitochondrial oxidant stress. However, the expression and functional implication of low-threshold activated T-type Ca(2+) channels in LC neurons were not yet studied. To this end we performed RT-PCR expression analysis in LC neurons. In addition, we utilized slice patch clamp recordings of in vitro brainstem slices in combination with L-type and T-type Ca(2+) channel blockers. We found the expression of a distinct set of L-type and T-type Ca(2+) channel subtypes mediating a pronounced low-threshold activated Ca(2+) current component. Analyzing spike trains, we revealed that neither L-type Ca(2+) channel nor T-type Ca(2+) channel blockade alone leads to a change in firing properties. In contrast, a combined application of antagonists significantly decreased the afterhyperpolarization amplitude, resulting in an increased firing frequency. Hence, we report the functional expression of T-type Ca(2+) channels in LC neurons and demonstrate their role in increasing the robustness of LC pacemaking by working in concert with Cav1 channels.


Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease.

  • Candan Depboylu‎ et al.
  • Experimental neurology‎
  • 2012‎

Parkinson disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Recent evidence suggests that innate and adaptive immune responses can influence dopaminergic cell death in animal models of PD. However, the precise role of mononuclear phagocytes, key players in damaged tissue clearance and cross-talk with cells of adaptive immune system, remains open in PD. Mononuclear phagocytes in the brain occur as brain-resident microglia and as brain-infiltrating myeloid cells. To elucidate their differential contribution in the uptake of dopaminergic cell debris and antigen presentation capacity, we labeled nigral dopaminergic neurons retrogradely with inert rhodamine-conjugated latex retrobeads before inducing their degeneration by subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. We used green fluorescent protein (GFP)-expressing bone marrow chimeric mice to differentiate brain-infiltrating from brain-resident myeloid cells. We found that half of both endogenous (GFP-) and exogenous (GFP+) microglia (Iba1+) in the SN incorporated the tracer from degenerating dopaminergic neurons 1d after MPTP intoxication. In absolute numbers, endogenous microglia were much more activated to macrophages compared to exogenous myeloid cells at 1d after MPTP. Mainly the endogenous, tracer-phagocytosing microglia expressed the major histocompatibility complex (MHC) class II molecule for antigen presentation. Additionally, T-lymphocytes (Iba1-/GFP+/CD3+), which infiltrate the MPTP-lesioned SN, were mainly in direct contact with MHCII+ endogenous microglia. Our data suggest that brain-resident microglia are predominantly implicated in the removal of dopaminergic cell debris and the cross-talk with infiltrating T-lymphocytes in the SN in the MPTP mouse model of PD.


Widespread microglial activation in multiple system atrophy.

  • Dorothee Kübler‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2019‎

The pattern and role of microglial activation in multiple system atrophy is largely unclear. The objective of this study was to use [11 C](R)-PK11195 PET to determine the extent and correlation of activated microglia with clinical parameters in MSA patients.


Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells.

  • Matthias Höllerhage‎ et al.
  • Scientific reports‎
  • 2017‎

α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.


Neuronal precursor cells with dopaminergic commitment in the rostral migratory stream of the mouse.

  • Kerstin Schweyer‎ et al.
  • Scientific reports‎
  • 2019‎

Neuroblasts born in the subventricular zone of adult mammals migrate via the rostral migratory stream into the granular cell layer or periglomerular layer of the olfactory bulb to differentiate into interneurons. To analyze if new neurons in the granular cell layer or periglomerular layer have different origins, we inserted a physical barrier into the rostral migratory stream, depleted cell proliferation with cytarabine infusions, labeled newborn cells with bromodeoxyuridine, and sacrificed mice after short-term (0, 2, or 14 days) or long-term (55 or 105 days) intervals. After short-term survival, the subventricular zone and rostral migratory stream rapidly repopulated with bromodeoxyuridine+ cells after cytarabine-induced depletion. Nestin, glial fibrillary acidic protein and the PAX6 were expressed in bromodeoxyuridine+ cells within the rostral migratory stream downstream of the physical barrier. After long-term survival after physical barrier implantation, bromodeoxyuridine+ neurons were significantly reduced in the granular cell layer, but bromodeoxyuridine+ and dopaminergic neurons in the periglomerular layer remained unaffected by the physical barrier. Thus, newborn neurons for the granular cell layer are mainly recruited from neural stem cells located in the subventricular zone, but new neurons for the periglomerular layer with dopaminergic predisposition can rise as well from neuronal stem or precursor cells in the rostral migratory stream.


Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis.

  • Barbara Schormair‎ et al.
  • The Lancet. Neurology‎
  • 2017‎

Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets.


The roles of connectivity and neuronal phenotype in determining the pattern of α-synuclein pathology in Parkinson's disease.

  • Michael X Henderson‎ et al.
  • Neurobiology of disease‎
  • 2022‎

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and motor dysfunction has been attributed to loss of dopaminergic neurons. However, motor dysfunction is only one of many symptoms experienced by patients. A neuropathological hallmark of PD is intraneuronal protein aggregates called Lewy pathology (LP). Neuropathological staging studies have shown that dopaminergic neurons are only one of the many cell types prone to manifest LP. Progressive appearance of LP in multiple brain regions, as well as peripheral nerves, has led to the popular hypothesis that LP and misfolded forms of one of its major components - α-synuclein (aSYN) - can spread through synaptically connected circuits. However, not all brain regions or neurons within connected circuits develop LP, suggesting that cell autonomous factors modulate the development of pathology. Here, we review studies about how LP develops and progressively engages additional brain regions. We focus on how connectivity constrains progression and discuss cell autonomous factors that drive pathology development. We propose a mixed model of cell autonomous factors and trans-synaptic spread as mediators of pathology progression and put forward this model as a framework for future experiments exploring PD pathophysiology.


High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types.

  • Sarah Doss‎ et al.
  • Annals of clinical and translational neurology‎
  • 2014‎

To retrospectively determine the frequency of N-Methyl-D-Aspartate (NMDA) receptor (NMDAR) autoantibodies in patients with different forms of dementia.


Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity.

  • Matthias Höllerhage‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder. Presently, there is no causal therapy available to slow down or halt disease progression. The presynaptic protein alpha-synuclein aggregates to form intraneuronal Lewy bodies in PD. It is generally believed that intermediates on the way from monomers to the large aggregates would mediate neurotoxicity, but the precise species and mechanism responsible for neuronal death are controversially debated. To study alpha-synuclein-mediated toxicity, we developed a new model in which moderate overexpression of wild-type alpha-synuclein led to gradual death of human postmitotic dopaminergic neurons. In accordance with findings in postmortem PD brains, small oligomeric species occurred and the autophagic flux was impaired in our model. The phenothiazine neuroleptic trifluoperazine, an activator of macroautophagy, selectively reduced one particular alpha-synuclein species and rescued cells. Inversely, blocking of autophagy led to an accumulation of this oligomeric species and increased cell death. These data show that activation of autophagy is a promising approach to protect against alpha-synuclein pathology and likely acts by targeting one specific alpha-synuclein species.


Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease.

  • Lina A Matschke‎ et al.
  • Scientific reports‎
  • 2022‎

Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.


Whole-Genome Sequencing Analysis Reveals New Susceptibility Loci and Structural Variants Associated with Progressive Supranuclear Palsy.

  • Hui Wang‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2024‎

Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs).


Piericidin A aggravates Tau pathology in P301S transgenic mice.

  • Matthias Höllerhage‎ et al.
  • PloS one‎
  • 2014‎

The P301S mutation in exon 10 of the tau gene causes a hereditary tauopathy. While mitochondrial complex I inhibition has been linked to sporadic tauopathies. Piericidin A is a prototypical member of the group of the piericidins, a class of biologically active natural complex I inhibitors, isolated from streptomyces spp. with global distribution in marine and agricultural habitats. The aim of this study was to determine whether there is a pathogenic interaction of the environmental toxin piericidin A and the P301S mutation.


Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease.

  • Carmen Noelker‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells.


Determinants of seeding and spreading of α-synuclein pathology in the brain.

  • Martin T Henrich‎ et al.
  • Science advances‎
  • 2020‎

In Parkinson's disease (PD), fibrillar forms of α-synuclein are hypothesized to propagate through synaptically coupled networks, causing Lewy pathology (LP) and neurodegeneration. To more rigorously characterize the determinants of spreading, preformed α-synuclein fibrils were injected into the mouse pedunculopontine nucleus (PPN), a brain region that manifests LP in PD patients and the distribution of developing α-synuclein pathology compared to that ascertained by anterograde and retrograde connectomic mapping. Within the PPN, α-synuclein pathology was cell-specific, being robust in PD-vulnerable cholinergic neurons but not in neighboring noncholinergic neurons. While nearly all neurons projecting to PPN cholinergics manifested α-synuclein pathology, the kinetics, magnitude, and persistence of the propagated pathology were unrelated to the strength of those connections. Thus, neuronal phenotype governs the somatodendritic uptake of pathological α-synuclein, and while the afferent connectome restricts the subsequent spreading of pathology, its magnitude and persistence is not a strict function of the strength of coupling.


Sleep and Quality of Life Under Prolonged Release Oxycodone/Naloxone for Severe Restless Legs Syndrome: An Analysis of Secondary Efficacy Variables of a Double-Blind, Randomized, Placebo-Controlled Study with an Open-Label Extension.

  • Wolfgang H Oertel‎ et al.
  • CNS drugs‎
  • 2016‎

The aim was to assess the effects of prolonged release oxycodone/naloxone (OXN PR) on sleep and quality of life (QoL) in patients with severe restless legs syndrome (RLS) refractory to first-line dopaminergic RLS treatment.


Mutant α-Synuclein Overexpression Induces Stressless Pacemaking in Vagal Motoneurons at Risk in Parkinson's Disease.

  • Efrat Lasser-Katz‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

α-Synuclein overexpression (ASOX) drives the formation of toxic aggregates in neurons vulnerable in Parkinson's disease (PD), including dopaminergic neurons of the substantia nigra (SN) and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). Just as these populations differ in when they exhibit α-synucleinopathies during PD pathogenesis, they could also differ in their physiological responses to ASOX. An ASOX-mediated hyperactivity of SN dopamine neurons, which was caused by oxidative dysfunction of Kv4.3 potassium channels, was recently identified in transgenic (A53T-SNCA) mice overexpressing mutated human α-synuclein. Noting that DMV neurons display extensive α-synucleinopathies earlier than SN dopamine neurons while exhibiting milder cell loss in PD, we aimed to define the electrophysiological properties of DMV neurons in A53T-SNCA mice. We found that DMV neurons maintain normal firing rates in response to ASOX. Moreover, Kv4.3 channels in DMV neurons exhibit no oxidative dysfunction in the A53T-SNCA mice, which could only be recapitulated in wild-type mice by glutathione dialysis. Two-photon imaging of redox-sensitive GFP corroborated the finding that mitochondrial oxidative stress was diminished in DMV neurons in the A53T-SNCA mice. This reduction in oxidative stress resulted from a transcriptional downregulation of voltage-activated (Cav) calcium channels in DMV neurons, which led to a reduction in activity-dependent calcium influx via Cav channels. Thus, ASOX induces a homeostatic remodeling with improved redox signaling in DMV neurons, which could explain the differential vulnerability of SN dopamine and DMV neurons in PD and could promote neuroprotective strategies that emulate endogenous homeostatic responses to ASOX (e.g., stressless pacemaking) in DMV neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: