Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding.

  • Wentao Hu‎ et al.
  • PloS one‎
  • 2014‎

The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.


Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms.

  • Jian Zhang‎ et al.
  • Bone‎
  • 2019‎

Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.


Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells.

  • Xin Wu‎ et al.
  • Radiation oncology (London, England)‎
  • 2014‎

B cell translocation gene 1 (BTG1) has long been recognized as a tumor suppressor gene. Recent reports demonstrated that BTG1 plays an important role in progression of cell cycle and is involved in cellular response to stressors. However, the microRNAs mediated regulatory mechanism of BTG1 expression has not been reported so far. MicroRNAs can effectively influence tumor radiosensitivity by preventing cell cycle progression, resulting in enhancement of the cytotoxicity of radiotherapy efficacy. This study aimed to demonstrating the effects of microRNAs on the BTG1 expression and cellular radiosensitivity.


SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer.

  • Shuxian Pan‎ et al.
  • Oncology letters‎
  • 2020‎

SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.


PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer.

  • Zhigang Liang‎ et al.
  • Translational cancer research‎
  • 2019‎

This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC).


Benefits of successful percutaneous coronary intervention in chronic total occlusion patients with diabetes.

  • Shuai Zhao‎ et al.
  • Cardiovascular diabetology‎
  • 2022‎

Diabetes was commonly seen in chronic total occlusion (CTO) patients but data regarding the impact of successful percutaneous coronary intervention (PCI) on clinical outcome of CTO patients with diabetes was controversial. And importantly, no studies have compared quality of life (QOL) after CTO-PCI in patients with and without diabetes.


Functional ultrasound imaging reveals 3D structure of orientation domains in ferret primary visual cortex.

  • Wentao Hu‎ et al.
  • NeuroImage‎
  • 2023‎

The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed.


Comprehensive Bioinformatics Analysis to Identify the Gene HMMR Associated With Lung Adenocarcinoma Prognosis and Its Mechanism of Action in Multiple Cancers.

  • Jianguang Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Lung cancer is the third most frequently diagnosed cancer in the world, with lung adenocarcinoma (LUAD) as the most common pathological type. But studies on the predictive effect of a single gene on LUAD are limited. We aimed to discover new predictive markers for LUAD.


Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures.

  • Wentao Hu‎ et al.
  • Journal of radiation research‎
  • 2014‎

High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design.


Overexpression of Ras-Related C3 Botulinum Toxin Substrate 2 Radiosensitizes Melanoma Cells In Vitro and In Vivo.

  • Wentao Hu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Radioresistance is the major obstacle in the radiotherapy of the malignant melanoma. Thus, it is of importance to increase the radiosensitivity of melanoma cells. In the present study, the radioresistant melanoma cell line OCM-1 with inducible overexpression of Ras-related C3 botulinum toxin substrate 2 was established based on a radiation-inducible early growth response gene (Egr-1) promoter. The effects of Ras-related C3 botulinum toxin substrate 2 overexpression on the radiosensitivity of melanoma cells exposed to either X-rays or carbon ion beams were evaluated in cultured cells as well as xenograft tumor models. In addition, both reactive oxygen species yield and the NADPH oxidase activity were measured in the irradiated melanoma cells. It was found that the radiation-inducible overexpression of Ras-related C3 botulinum toxin substrate 2 sensitized the melanoma cells to both X-rays and carbon ion irradiation by enhancing the NADPH oxidase activity and the subsequent reactive oxygen species production. Besides, the overexpression of Ras-related C3 botulinum toxin substrate 2 enhanced the tumor-killing effect of radiotherapy in xenograft tumors significantly. The results of this study indicate that Ras-related C3 botulinum toxin substrate 2 is promising in increasing the radiosensitivity of melanoma cells, which provides experimental evidence and theoretical basis for clinical radiosensitization of the malignant melanoma.


Regional biomechanical imaging of liver cancer cells.

  • Weiwei Pei‎ et al.
  • Journal of Cancer‎
  • 2019‎

Liver cancer is one of the leading cancers, especially in developing countries. Understanding the biomechanical properties of the liver cancer cells can not only help to elucidate the mechanisms behind the cancer progression, but also provide important information for diagnosis and treatment. At the cellular level, we used well-established atomic force microscopy (AFM) techniques to characterize the heterogeneity of mechanical properties of two different types of human liver cancer cells and a normal liver cell line. Stiffness maps with a resolution of 128x128 were acquired for each cell. The distributions of the indentation moduli of the cells showed significant differences between cancerous cells and healthy controls. Significantly, the variability was even greater amongst different types of cancerous cells. Fitting of the histogram of the effective moduli using a normal distribution function showed the Bel7402 cells were stiffer than the normal cells while HepG2 cells were softer. Morphological analysis of the cell structures also showed a higher cytoskeleton content among the cancerous cells. Results provided a foundation for applying knowledge of cell stiffness heterogeneity to search for tissue-level, early-stage indicators of liver cancer.


Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells.

  • Lei Song‎ et al.
  • Oncotarget‎
  • 2017‎

Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.


Suppression of Nestin reveals a critical role for p38-EGFR pathway in neural progenitor cell proliferation.

  • Wentao Hu‎ et al.
  • Oncotarget‎
  • 2016‎

The expression of intermediate filament Nestin is necessary for the neural progenitor cells (NPCs) to maintain stemness, but the underlying cellular and molecular mechanism remains unclear. In this study, we demonstrated that Nestin is required for the self-renew of NPCs through activating MAPK and EGFR pathways. Knockdown of Nestin by shRNA inhibited cell cycle progression and proliferation in mouse NPCs. Moreover, suppression of Nestin reduced expression of the epidermal growth factor receptor (EGFR) in NPCs and inhibited the mitogenic effects of EGF on these cells. Treatment of NPCs with p38-MAPK inhibitor PD169316 reversed cell cycle arrest caused by the knockdown of Nestin. Our findings indicate that Nestin promotes NPC proliferation via p38-MAPK and EGFR pathways, and reveals the necessity of these pathways in NPCs self-renewal.


Radiation Exposure-Induced Changes in the Immune Cells and Immune Factors of Mice With or Without Primary Lung Tumor.

  • Shuxian Pan‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2020‎

Recent studies have demonstrated that radiation activates in situ antitumor immunity and consequently induced a synergistic effect of radiotherapy and immunotherapy. However, studies related to radiation-induced changes in immune system of tumor-bearing mice are limited, which are of great significance to improve the efficacy of radioimmunotherapy. In this study, we first established a primary lung tumor mouse model using urethane. Then part of the right lung of the mouse was exposed to X-ray irradiation with a computed tomography-guided small animal irradiator and the changes of immune cells in both peripheral blood and spleen were determined by flow cytometry. Besides, the levels of both cytokines and immunoglobulins in mouse serum were detected by a protein chip. We found that B lymphocytes increased while CD8+ T lymphocytes reduced significantly. Interleukin-3 (IL-3), IL-6, regulated upon activation, normally T-expressed, and presumably secreted factor (RANTES), and vascular endothelial growth factor (VEGF) were found to be decreased after tumor formation, and the similar results have also been observed with kappa, IgG3, IgE, IgM, and IgG2a. After irradiation, lower concentrations of IgD, kappa, and IgM were found in the serum. Our findings indicate that localized tumor irradiation caused some obvious changes like inhibiting the ability of innate immunity, and these changes may be useful in predicting prognosis.


MicroRNAs Responding to Space Radiation.

  • Yujie Yan‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.


Epithelial-mesenchymal transition in non-targeted lung tissues of Kunming mice exposed to X-rays is suppressed by celecoxib.

  • Wentao Hu‎ et al.
  • Journal of radiation research‎
  • 2018‎

Lung cancer is one of the highest health risks caused by ionizing radiation, which induces both direct effects and non-targeted effects. However, whether radiation-induced non-targeted effects result in epithelial-mesenchymal transition, a critical process during tumorigenesis, in non-targeted lung tissues remains unknown. In the present study, Kunming mice were subjected to whole-body, cranial or local abdominal irradiation of single-dose or fractionated 4 Gy X-rays, and the expressions of epithelial-mesenchymal transition markers in non-targeted lung tissues were assessed by both qRT-PCR and immunofluorescent staining. It was found that the epithelial marker was downregulated while the mesenchymal markers were upregulated significantly in non-targeted lung tissues of the irradiated mice. Local abdominal irradiation was more efficient in inducing epithelial-mesenchymal transition than whole-body or cranial irradiation when the fractionated irradiation method was adopted. In addition, the intraperitoneal administration of celecoxib suppressed epithelial-mesenchymal transition in the non-targeted lung tissues. In conclusion, our findings suggest that epithelial-mesenchymal transition is induced in non-targeted lung tissues, but can be suppressed by inhibition of cyclooxygenase-2 by celecoxib.


Complete Technical Scheme for Automatic Biological Dose Estimation Platform.

  • Hong Dai‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2018‎

To establish a complete technical solution for the automatic radiation biological dose estimation platform for biological dose estimation and classification of the wounded in large-scale radiation accidents, the "dose-effect curve by dicentric chromosome (DIC) automatic analysis" was established and its accuracy was verified. The effects of analyzed cell number and the special treatment of the culture on dose estimation by DIC automatic analysis were studied. Besides, sample processing capabilities of the special equipments were tested. The fitted "dose-effect curve by DIC automatic analysis" was presented as follows: Y = (0.01806 ± 0.00032) D 2 + (0.01279 ± 0.00084) D + (0.0004891 ± 0.0001358) (R 2 = 0.961). Three-gradient scanning method, culture refrigeration method, and interprofessional collaboration under extreme conditions were proposed to improve the detection speed, prolong the sample processing time window, and reduce the equipment investment. In addition, the optimized device allocation ratio for the automatic biological dose estimation laboratory was proposed to eliminate the efficiency bottleneck. The complete set of technical solutions for the high-throughput automatic biological dose estimation laboratory proposed in this study can meet the requirements of early classification and rapid biological dose assessment of the wounded during the large-scale nuclear radiation events, and it is worthy of further promotion.


Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis.

  • Wentao Hu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2022‎

Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors.


Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents.

  • Hao Huang‎ et al.
  • Bioactive materials‎
  • 2022‎

The integration of photothermal therapy (PTT) with gene therapy (GT) in a single nanoscale platform demonstrates great potential in cancer therapy. Porous iron oxide nanoagents (PIONs) are widely used as magnetic nanoagents in the drug delivery field and also serve as a photothermal nanoagent for photothermal therapy. However, the therapeutic efficacy of PIONs-mediated GT has not been studied. The long noncoding RNA (lncRNA) CRYBG3 (LNC CRYBG3), a lncRNA induced by heavy ion irradiation in lung cancer cells, has been reported to directly bind to globular actin (G-actin) and cause degradation of cytoskeleton and blocking of cytokinesis, thus indicating its potential for use in GT by simulating the effect of heavy ion irradiation and functioning as an antitumor drug. In the present study, we investigated the possibility of combining PIONs-mediated PTT and LNC CRYBG3-mediated GT to destroy non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. The combination therapy showed a high cancer cell killing efficacy, and the cure rate was better than that achieved using PTT or GT alone. Moreover, as a type of magnetic nanoagent, PIONs can be used for magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) both in vitro and in vivo. These findings indicate that the new combination therapy has high potential for cancer treatment.


Identification of a Three-Gene Signature Based on Epithelial-Mesenchymal Transition of Lung Adenocarcinoma Through Construction and Validation of a Risk-Prediction Model.

  • Jianguang Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Epithelial-mesenchymal transition (EMT) process, which is regulated by genes of inducible factors and transcription factor family of signaling pathways, transforms epithelial cells into mesenchymal cells and is involved in tumor invasion and progression and increases tumor tolerance to clinical interventions. This study constructed a multigene marker for lung predicting the prognosis of lung adenocarcinoma (LUAD) patients by bioinformatic analysis based on EMT-related genes. Gene sets associated with EMT were downloaded from the EMT-gene database, and RNA-seq of LUAD and clinical information of patients were downloaded from the TCGA database. Differentially expressed genes were screened by difference analysis. Survival analysis was performed to identify genes associated with LUAD prognosis, and overlapping genes were taken for all the three. Prognosis-related genes were further determined by combining LASSO regression analysis for establishing a prediction signature, and the risk score equation for the prognostic model was established using multifactorial COX regression analysis to construct a survival prognostic model. The model accuracy was evaluated using subject working characteristic curves. According to the median value of risk score, samples were divided into a high-risk group and low-risk group to observe the correlation with the clinicopathological characteristics of patients. Combined with the results of one-way COX regression analysis, HGF, PTX3, and S100P were considered as independent predictors of LUAD prognosis. In lung cancer tissues, HGF and PTX3 expression was downregulated and S100P expression was upregulated. Kaplan-Meier, COX regression analysis showed that HGF, PTX3, and S100P were prognostic independent predictors of LUAD, and high expressions of all the three were all significantly associated with immune cell infiltration. The present study provided potential prognostic predictive biological markers for LUAD patients, and confirmed EMT as a key mechanism in LUAD progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: