Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity.

  • Hui Wang‎ et al.
  • The EMBO journal‎
  • 2010‎

CCR4, an evolutionarily conserved member of the CCR4-NOT complex, is the main cytoplasmic deadenylase. It contains a C-terminal nuclease domain with homology to the endonuclease-exonuclease-phosphatase (EEP) family of enzymes. We have determined the high-resolution three-dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X-ray crystallography using the single-wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete alpha/beta sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg(2+)-dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.


Recognition of antimicrobial peptides by a bacterial sensor kinase.

  • Martin W Bader‎ et al.
  • Cell‎
  • 2005‎

PhoQ is a membrane bound sensor kinase important for the pathogenesis of a number of Gram-negative bacterial species. PhoQ and its cognate response regulator PhoP constitute a signal-transduction cascade that controls inducible resistance to host antimicrobial peptides. We show that enzymatic activity of Salmonella typhimurium PhoQ is directly activated by antimicrobial peptides. A highly acidic surface of the PhoQ sensor domain participates in both divalent-cation and antimicrobial-peptide binding as a first step in signal transduction across the bacterial membrane. Identification of PhoQ signaling mutants, binding studies with the PhoQ sensor domain, and structural analysis of this domain can be incorporated into a model in which antimicrobial peptides displace divalent cations from PhoQ metal binding sites to initiate signal transduction. Our findings reveal a molecular mechanism by which bacteria sense small innate immune molecules to initiate a transcriptional program that promotes bacterial virulence.


Protective Effects of 2-Amino-5,6-dihydro-4H-1,3-thiazine and Its Derivative against Radiation-Induced Hematopoietic and Intestinal Injury in Mice.

  • Yuanyuan Li‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Ionizing radiation (IR) acts as an external stimulating factor, when it acts on the body, it will activate NF- κ B and cause the up-regulation of inducible nitric oxide synthase (iNOS) and induce a large amount of nitric oxide (NO) production. NO and other reactive nitrogen and oxygen species (RNS and ROS) can cause damage to biological molecules and affect their physiological functions. Our study investigated the protective role of 2-amino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-ADT) and 2-acetylamino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-AADT), two nitric oxide synthase inhibitors, against radiation-induced hematopoietic and intestinal injury in mice. Pretreatment with 2-ADT and 2-AADT improved the survival of mice exposed to a lethal dose of radiation, especially, the survival rate of the 2-ADT 20 mg/kg group was significantly higher than that of the vehicle group (p < 0.001). Our findings indicated that the radioprotective actions of 2-ADT and 2-AADT are achieved via accelerating hematopoietic system recovery, decreasing oxidative and nitrosative stress by enhancing the antioxidant defense system and reducing NO as well as peroxynitrite (ONOO − ) content, and mitigating the radiation-induced DNA damage evaluated by comet assay. These results suggest that 2-ADT and 2-AADT may have great application potential in ameliorating the damages of radiotherapy.


Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells.

  • Jun Li‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

Breast cancer stem cells (CSCs) are responsible for the initiation, recurrence, and metastasis of breast cancer. Sufficient evidence has established that breast cancer cells can spontaneously turn into breast CSCs. Thus, it is essential to simultaneously target breast CSCs and cancer cells to maximize the efficacy of breast cancer therapy. HER2 has been found to be overexpressed in both breast CSCs and cancer cells. We developed salinomycin-loaded polymer-lipid hybrid anti-HER2 nanoparticles (Sali-NP-HER2) to target both HER2-positive breast CSCs and cancer cells.


Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56.

  • Jiao Wang‎ et al.
  • EMBO reports‎
  • 2017‎

Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two-hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N-terminal CIP2A fragment (amino acids 1-560) at 3.0 Å resolution, and by subsequent structure-based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N-terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure-function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.


β-Naphthoflavone Activation of the Ah Receptor Alleviates Irradiation-Induced Intestinal Injury in Mice.

  • Xiaoliang Zhou‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Radiotherapy induced gastrointestinal syndrome results from the acute damage of intestinal stem cells, impaired crypts reconstruction, and subsequent breakdown of the mucosal barrier. The toxicity of ionizing radiation is associated with oxidative stress in the intestinal epithelial cells (IECs). Moreover, the rapid proliferation of IECs is a risk factor for radiation damage. β-naphthoflavone (BNF) is an agonist of the aryl hydrocarbon receptor (AhR) and possesses potential antioxidative activity. We investigated BNF radioprotection in IECs experiencing γ-ray exposure, contributed to mitigation of radiation enteritis. BNF significantly enhanced cell viability and suppressed cell apoptosis in an AhR activation-dependent manner. The mechanism of BNF reducing the IECs radiosensitivity was associated with cell cycle arrest and suppression of cell proliferation. In contrast, AhR antagonist CH-223191 significantly blocked BNF-induced cell cycle arrest. Cyp1a1 mRNA levels are induced after irradiation in a dose-dependent manner, and CYP1A1 protein expression increased in the irradiated intestinal tract as well. BNF also reduces DNA strand breaks induced by irradiation. These studies demonstrate that BNF pretreatment prolonged median survival time of mice upon exposure to a lethal dose of radiation and alleviated irradiation-induced toxicity within the bowel.


Structural insights into substrate recognition by the type VII secretion system.

  • Shuhui Wang‎ et al.
  • Protein & cell‎
  • 2020‎

Type VII secretion systems (T7SSs) are found in many disease related bacteria including Mycobacterium tuberculosis (Mtb). ESX-1 [early secreted antigen 6 kilodaltons (ESAT-6) system 1] is one of the five subtypes (ESX-1~5) of T7SSs in Mtb, where it delivers virulence factors into host macrophages during infection. However, little is known about the molecular details as to how this occurs. Here, we provide high-resolution crystal structures of the C-terminal ATPase3 domains of EccC subunits from four different Mtb T7SS subtypes. These structures adopt a classic RecA-like ɑ/β fold with a conserved Mg-ATP binding site. The structure of EccCb1 in complex with the C-terminal peptide of EsxB identifies the location of substrate recognition site and shows how the specific signaling module "LxxxMxF" for Mtb ESX-1 binds to this site resulting in a translation of the bulge loop. A comparison of all the ATPase3 structures shows there are significant differences in the shape and composition of the signal recognition pockets across the family, suggesting that distinct signaling sequences of substrates are required to be specifically recognized by different T7SSs. A hexameric model of the EccC-ATPase3 is proposed and shows the recognition pocket is located near the central substrate translocation channel. The diameter of the channel is ~25-Å, with a size that would allow helix-bundle shaped substrate proteins to bind and pass through. Thus, our work provides new molecular insights into substrate recognition for Mtb T7SS subtypes and also a possible transportation mechanism for substrate and/or virulence factor secretion.


Fine particulate matter (PM2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice.

  • Yunxia Zhao‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2019‎

To observe the effects of prolonged exposure to high concentrations of PM2.5 on the trachea and lungs of mice and to determine whether the damages to the trachea and lung are induced by necroptosis.


Advances in wound repair and regeneration: Systematic comparison of cell free fat extract and platelet rich plasma.

  • Lifang Zhang‎ et al.
  • Frontiers in chemistry‎
  • 2022‎

Background: Previous studies showed Cell free fat extract (CEFFE) and Platelet rich plasma (PRP) could effectively accelerate wound healing. However, the comparative study on curative effect is still lacking. A systematic comparison could provide more theoretical support and laboratory basis for the clinical application of CEFFE and PRP. Objective: To compare the efficacy of CEFFE and PRP in promoting skin wound repair. Methods: CEFFE and PRP were prepared according to the literature. The wound repair related factors were measured and compared. In vitro, the effects of both on cell migration, proliferation and tube formation were compared. In vivo, wound healing rate was measured on the 1st, 3rd, 9th, and 12th days after skin injury and treatment. Then the specimens were cut off for histological analysis. Results: Although the total protein content of PRP was significantly around 19 times higher than that of CEFFE, there was no statistical difference in the content of BDNF, EGF and VEGF between CEFFE and PRP. Even the NT-3 content of CEFFE was just slightly higher than that of PRP. The concentration of b-FGF, HGF and TGF-β and PDGF-BB in PRP is higher than that in CEFFE, but there is only a very small difference between them. In vitro, PRP showed better efficacy than CEFFE in promoting fibroblast proliferation while there was no significant difference in promoting angiogenesis and fibroblast migration. Both PRP and CEFFE could significantly promote wound healing in mice. There was no statistical difference in wound healing between CEFFE and PRP groups in vivo. Immunohistochemical staining of Ki67&CD31 showed that there was no significant difference between PRP and CEFFE groups. Conclusion: The effect of PRP and CEFFE in promoting wound healing was similar. In clinical practice, the acquisition of PRP is relatively more convenient. Containing no cells, CEFFE has the advantage of easier preservation. For patients who have discarded adipose tissue, or contraindications to PRP technology, CEFFE technology may provide a new option for skin wound repair.


Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.

  • Shan Sun‎ et al.
  • Protein & cell‎
  • 2023‎

The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.


Optimal target saturation of ligand-blocking anti-GITR antibody IBI37G5 dictates FcγR-independent GITR agonism and antitumor activity.

  • Huisi Liu‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a co-stimulatory receptor and an important target for cancer immunotherapy. We herein present a potent FcγR-independent GITR agonist IBI37G5 that can effectively activate effector T cells and synergize with anti-programmed death 1 (PD1) antibody to eradicate established tumors. IBI37G5 depends on both antibody bivalency and GITR homo-dimerization for efficient receptor cross-linking. Functional analyses reveal bell-shaped dose responses due to the unique 2:2 antibody-receptor stoichiometry required for GITR activation. Antibody self-competition is observed after concentration exceeded that of 100% receptor occupancy (RO), which leads to antibody monovalent binding and loss of activity. Retrospective pharmacokinetics/pharmacodynamics analysis demonstrates that the maximal efficacy is achieved at medium doses with drug exposure near saturating GITR occupancy during the dosing cycle. Finally, we propose an alternative dose-finding strategy that does not rely on the traditional maximal tolerated dose (MTD)-based paradigm but instead on utilizing the RO-function relations as biomarker to guide the clinical translation of GITR and similar co-stimulatory agonists.


Radical-dominated reaction of CO-NO on a CaFe2O4 surface in sintering flue gas recirculation.

  • Chaoqun Li‎ et al.
  • RSC advances‎
  • 2020‎

The catalytic reduction behaviours between NO and CO on a CaFe2O4 surface were studied using flue gas recirculation. The reaction mechanism and control principle were investigated via experiment and theoretical calculations. The experiment results show that CaFe2O4 can catalyse the reduction of NO by CO, and the NO conversion rate increases with the increase in CO concentration. The theoretical calculations indicate that the CO-NO reaction on CaFe2O4 surfaces complies with the Eley-Rideal mechanism, and the reaction path is controlled by nitrogen, oxygen and isocyanate radicals. Specifically, the dissociation of NO into nitrogen and oxygen radicals, and the formation of subsequent isocyanate radicals dominate the reaction. The results provide new insight into the intrinsic reaction mechanism and the meso-scale control principle, allowing us to propose a novel process design scheme to improve the NO x emission reduction efficiency in the flue gas recirculation process.


Structures of Omicron spike complexes and implications for neutralizing antibody development.

  • Hangtian Guo‎ et al.
  • Cell reports‎
  • 2022‎

The emergence of the SARS-CoV-2 Omicron variant is dominant in many countries worldwide. The high number of spike mutations is responsible for the broad immune evasion from existing vaccines and antibody drugs. To understand this, we first present the cryo-electron microscopy structure of ACE2-bound SARS-CoV-2 Omicron spike. Comparison to previous spike antibody structures explains how Omicron escapes these therapeutics. Secondly, we report structures of Omicron, Delta, and wild-type spikes bound to a patient-derived Fab antibody fragment (510A5), which provides direct evidence where antibody binding is greatly attenuated by the Omicron mutations, freeing spike to bind ACE2. Together with biochemical binding and 510A5 neutralization assays, our work establishes principles of binding required for neutralization and clearly illustrates how the mutations lead to antibody evasion yet retain strong ACE2 interactions. Structural information on spike with both bound and unbound antibodies collectively elucidates potential strategies for generation of therapeutic antibodies.


Structure of the priming arabinosyltransferase AftA required for AG biosynthesis of Mycobacterium tuberculosis.

  • Yicheng Gong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence.

  • Marshall Lukacs‎ et al.
  • Experimental neurology‎
  • 2019‎

The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.


Nerve growth factor metabolic dysfunction contributes to sevoflurane-induced cholinergic degeneration and cognitive impairments.

  • Lu Xiong‎ et al.
  • Brain research‎
  • 2019‎

General anesthesia with sevoflurane is associated with an increased incidence of postoperative cognitive dysfunction. Previous studies have shown that sevoflurane anesthesia can affect the integrity and function of basal forebrain cholinergic neurons (BFCNs) which are essential for learning and memory. However, the underlying mechanisms remain largely unknown. Here, we demonstrated that exposure to 2.5% sevoflurane induced significant loss of BFCNs and caused impairments of the spatial and the fear memory. Further, sevoflurane exposure significantly reduced the level of nerve growth factor (NGF), an important factor for the survival and phenotype maintenance of BFCNs, by disrupting its synthesis pathways in the brain. More importantly, NGF administration not only prevented the loss of BFCNs but also ameliorated the cognitive impairments in sevoflurane-treated mice. Our findings indicate that NGF metabolic dysfunction contributes to sevoflurane-associated BFCNs degeneration and subsequent cognitive deficits.


Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target.

  • Bing Zhang‎ et al.
  • Cell‎
  • 2019‎

Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.


Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.

  • Paul A DaRosa‎ et al.
  • Nature‎
  • 2015‎

Protein poly(ADP-ribosyl)ation (PARylation) has a role in diverse cellular processes such as DNA repair, transcription, Wnt signalling, and cell death. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several crucial regulatory proteins, including Axin and 3BP2 (refs 7, 8, 9). The RING-type E3 ubiquitin ligase RNF146 (also known as Iduna) is responsible for PARylation-dependent ubiquitination (PARdU). Here we provide a structural basis for RNF146-catalysed PARdU and how PARdU specificity is achieved. First, we show that iso-ADP-ribose (iso-ADPr), the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to bind and activate a ubiquitin-conjugating enzyme (E2) efficiently. Binding of PAR or iso-ADPr induces a major conformational change that creates a functional RING structure. Thus, RNF146 represents a new mechanistic class of RING E3 ligases, the activities of which are regulated by non-covalent ligand binding, and that may provide a template for designing inducible protein-degradation systems. Second, we find that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146-TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalysed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that the maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell.


Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization.

  • Zachary J DeBruine‎ et al.
  • Genes & development‎
  • 2017‎

Wnt/β-catenin signaling is activated when extracellular Wnt ligands bind Frizzled (FZD) receptors at the cell membrane. Wnts bind FZD cysteine-rich domains (CRDs) with high affinity through a palmitoylated N-terminal "thumb" and a disulfide-stabilized C-terminal "index finger," yet how these binding events trigger receptor activation and intracellular signaling remains unclear. Here we report the crystal structure of the Frizzled-4 (FZD4) CRD in complex with palmitoleic acid, which reveals a CRD tetramer consisting of two cross-braced CRD dimers. Each dimer is stabilized by interactions of one hydrophobic palmitoleic acid tail with two CRD palmitoleoyl-binding grooves oriented end to end, suggesting that the Wnt palmitoleoyl group stimulates CRD-CRD interaction. Using bioluminescence resonance energy transfer (BRET) in live cells, we show that WNT5A stimulates dimerization of membrane-anchored FZD4 CRDs and oligomerization of full-length FZD4, which requires the integrity of CRD palmitoleoyl-binding residues. These results suggest that FZD receptors may form signalosomes in response to Wnt binding through the CRDs and that the Wnt palmitoleoyl group is important in promoting these interactions. These results complement our understanding of lipoprotein receptor-related proteins 5 and 6 (LRP5/6), Dishevelled, and Axin signalosome assembly and provide a more complete model for Wnt signalosome assembly both intracellularly and at the membrane.


Structural basis of PP2A inhibition by small t antigen.

  • Uhn Soo Cho‎ et al.
  • PLoS biology‎
  • 2007‎

The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 A resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3-7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: