Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 170 papers

Material properties and constitutive modeling of infant porcine cerebellum tissue in tension at high strain rate.

  • Kui Li‎ et al.
  • PloS one‎
  • 2015‎

The mechanical characterization of infant porcine cerebellum tissue in tension at high strain rate is crucial for modeling traumatic cerebellum injury, which is in turn helpful for understanding the biomechanics of such injuries suffered in traffic accidents.


Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity.

  • Xiaojuan Jia‎ et al.
  • Scientific reports‎
  • 2015‎

Porcine reproductive and respiratory syndrome (PRRS) has caused large economic losses in the swine industry in recent years. Current PRRS vaccines fail to effectively prevent and control this disease. Consequently, there is a need to develop new antiviral strategies. MicroRNAs play critical roles in intricate host-pathogen interaction networks, but the involvement of miRNAs during PRRS virus (PRRSV) infection is not well understood. In this study, pretreatment with miR-26a induced a significant inhibition of PRRSV replication and remission of the cytopathic effect in MARC-145 cells, and this antiviral effect was sustained for at least 120 h. Luciferase reporter analysis showed that the PRRSV genome was not the target of miRNA-26a. Instead, RNA-seq analysis demonstrated that miR-26a significantly up-regulated innate anti-viral responses, including activating the type I interferon (IFN) signaling pathway and promoting the production of IFN-stimulated genes. These findings suggest that delivery of miR-26a may provide a potential strategy for anti-PRRSV therapies.


The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST).

  • Tong Dan‎ et al.
  • BMC microbiology‎
  • 2015‎

Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC).


Hepatitis B virus regulates apoptosis and tumorigenesis through the microRNA-15a-Smad7-transforming growth factor beta pathway.

  • Ningning Liu‎ et al.
  • Journal of virology‎
  • 2015‎

Hepatitis B virus (HBV) infection causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). Previously, we found that HBV mRNAs can absorb microRNA-15a (miR-15a) to affect apoptosis through the Bcl-2 pathway. We asked whether HBV could inhibit apoptosis and promote tumorigenesis through different pathways. In this study, we found that the transforming growth factor β (TGF-β) pathway-inhibitory factor Smad7 is a novel target of miR-15a. We demonstrated that HBV can upregulate the level of Smad7 by downregulating miR-15a. Furthermore, we examined the level of Smad7 in liver samples from HBV-infected HCC patients and found that HBV mRNAs are positively correlated with the level of Smad7. By taking the approach of using immunoblotting and luciferase reporter assays, we revealed that HBV can abrogate TGF-β signaling via upregulating Smad7. By using annexin V staining and caspase 3/7 activity assays, we found that HBV can inhibit TGF-β-induced apoptosis of HepG2 cells. We also showed that HBV can promote tumor growth in BALB/c nude mice through upregulating the expression of Smad7. In conclusion, we demonstrated that HBV can upregulate Smad7 expression and inhibit TGF-β signaling, which makes the cells resistant to TGF-β-induced apoptosis and promotes tumorigenesis.


The differential antiviral activities of chicken interferon α (ChIFN-α) and ChIFN-β are related to distinct interferon-stimulated gene expression.

  • Hongren Qu‎ et al.
  • PloS one‎
  • 2013‎

Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.


Defective Initiation of Liver Regeneration in Osteopontin-Deficient Mice after Partial Hepatectomy due to Insufficient Activation of IL-6/Stat3 Pathway.

  • Yankai Wen‎ et al.
  • International journal of biological sciences‎
  • 2015‎

The initial process in liver regeneration after partial hepatectomy involves the recruitment of immune cells and the release of cytokines. Osteopontin (OPN), a pro-inflammatory protein, plays critical roles in immune cell activation and migration. Although OPN has been implicated in the pathogenesis of many liver diseases, the role of OPN in liver regeneration remains obscure. In the present study, we found that serum and hepatic OPN protein levels were significantly elevated in wild-type (WT) mice after partial hepatectomy (PHx) and that bile ductal epithelia were the major cell source of hepatic OPN. Compared to WT mice, OPN knockout (KO) mice exhibited delayed liver regeneration after PHx. This delay in OPN(-/-) mice was attributed to impaired hepatic infiltration of macrophages and neutrophils, decreased serum and hepatic IL-6 levels, and blunted activation of macrophages after PHx. Furthermore, we demonstrate that the attenuated activation of macrophages is at least partially due to decreased hepatic and portal vein LPS levels in OPN(-/-) mice. In response to decreased IL-6 levels, the activation of signal transducer and transcription (Stat) 3 was reduced in hepatocytes of OPN(-/-) mice compared to WT mice after PHx. Consequently, hepatic activation of the downstream direct targets of IL6/Stat3, such as c-fos, c-jun, and c-myc, was also suppressed post-PHx in OPN(-/-) mice compared to WT mice. Collectively, these results support a unique role for OPN during the priming phase of liver regeneration, in which OPN enhances the recruitment of macrophages and neutrophils, and triggers hepatocyte proliferation through Kupffer cell-derived IL-6 release and the downstream activation of Stat3.


Phosphorylation Status of Tyrosine 78 Residue Regulates the Nuclear Export and Ubiquitination of Influenza A Virus Nucleoprotein.

  • Liang Cui‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Phosphorylation and dephosphorylation of nucleoprotein (NP) play significant roles in the life cycle of influenza A virus (IAV), and the biological functions of each phosphorylation site on NP are not exactly the same in controlling viral replication. Here, we identified tyrosine 78 residue (Y78) of NP as a novel phosphorylation site by mass spectrometry. Y78 is highly conserved, and the constant NP phosphorylation mimicked by Y78E delayed NP nuclear export through reducing the binding of NP to the cellular export receptor CRM1, and impaired virus growth. Furthermore, the tyrosine kinase inhibitors Dasatinib and AG490 reduced Y78 phosphorylation and accelerated NP nuclear export, suggesting that the Janus and Src kinases-catalyzed Y78 phosphorylation regulated NP nuclear export during viral replication. More importantly, we found that the NP phosphorylation could suppress NP ubiquitination via weakening the interaction between NP and E3 ubiquitin ligase TRIM22, which demonstrated a cross-talk between the phosphorylation and ubiquitination of NP. This study suggests that the phosphorylation status of Y78 regulates IAV replication by inhibiting the nuclear export and ubiquitination of NP. Overall, these findings shed new light on the biological roles of NP phosphorylation, especially its negative role in NP ubiquitination.


Marine fish peptides (collagen peptides) compound intake promotes wound healing in rats after cesarean section.

  • Xue Peng‎ et al.
  • Food & nutrition research‎
  • 2020‎

Wound complications are a major source of morbidity after cesarean section (CS) and contribute to increased risks in subsequent pregnancies. In the present study, we aim to investigate the wound healing potential of a kind of oligopeptide compound, mainly derived from the marine fish peptides (MFPs), in rats after CS by biomechanical, biochemical, and histological methods.


Progress in the Development of Universal Influenza Vaccines.

  • Wenqiang Sun‎ et al.
  • Viruses‎
  • 2020‎

Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict-all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.


Transcriptome Profiling Reveals Differential Effect of Interleukin-17A Upon Influenza Virus Infection in Human Cells.

  • Jing Li‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Influenza A virus (IAV) has developed elegant strategies to utilize cellular proteins and pathways to promote replication and evade the host antiviral response. Identification of these sabotaged host factors could increase the number of potential antiviral drug targets. Here, IAV A/PR/8/34 (PR8)- and A/California/04/2009-infected A549 and 293T cells displayed differential virus replication. To determine the host cellular responses of A549 and 293T cells to IAV infection, RNA-seq was used to identify differentially expressed genes. Our data revealed that IAV-infected A549 cells activated stronger virus-sensing signals and highly expressed cytokines, which play significant roles in initiating the innate immune and inflammatory responses. In addition, IAV-infected 293T cells displayed weak immune signaling and cytokine production. Remarkably, IL-17A and associated genes were highly enriched in IAV-infected 293T cells. Furthermore, IL-17A can partially facilitate A549 cell infection by the PR8 strain and PR8-infected IL-17A knock-out mice consistently exhibited decreased weight loss and reduced lung immunopathology, as compared to controls. This work uncovered the differential responses of cells infected with two H1N1 IAV strains and the potential roles of IL-17A in modulating virus infection.


Fanconi anemia pathway as a prospective target for cancer intervention.

  • Wenjun Liu‎ et al.
  • Cell & bioscience‎
  • 2020‎

Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposition. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene alterations in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway for cancer intervention.


Naturally Occurring Single Mutations in Ebola Virus Observably Impact Infectivity.

  • Gary Wong‎ et al.
  • Journal of virology‎
  • 2019‎

Sequencing of Ebola virus (EBOV) genomes during the 2014-2016 epidemic identified several naturally occurring, dominant mutations potentially impacting virulence or tropism. In this study, we characterized EBOV variants carrying one of the following substitutions: A82V in the glycoprotein (GP), R111C in the nucleoprotein (NP), or D759G in the RNA-dependent RNA polymerase (L). Compared with the wild-type (WT) EBOV C07 isolate, NP and L mutants conferred a replication advantage in monkey Vero E6, human A549, and insectivorous bat Tb1.Lu cells, while L mutants displayed a disadvantage in human Huh7 cells. The replication of the GP mutant was significantly delayed in Tb1.Lu cells and similar to that of the WT in other cells. The L mutant was less virulent, as evidenced by increased survival for mice and a significantly delayed time to death for ferrets, but increased lengths of the period of EBOV shedding may have contributed to the prolonged epidemic. Our results show that single substitutions can have observable impacts on EBOV pathogenicity and provide a framework for the study of other mutations.IMPORTANCE During the Ebola virus (EBOV) disease outbreak in West Africa in 2014-2016, it was discovered that several mutations in the virus emerged and became prevalent in the human population. This suggests that these mutations may play a role impacting viral fitness. We investigated three of these previously identified mutations (in the glycoprotein [GP], nucleoprotein [NP], or RNA-dependent RNA polymerase [L]) in cell culture, as well as in mice and ferrets, by generating recombinant viruses (based on an early West African EBOV strain) each carrying one of these mutations. The NP and L mutations appear to decrease virulence, whereas the GP mutation slightly increases virulence but mainly impacts viral tropism. Our results show that these single mutations can impact EBOV virulence in animals and have implications for the rational design of efficacious antiviral therapies against these infections.


Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses.

  • Min Zhao‎ et al.
  • mBio‎
  • 2018‎

Against a backdrop of seasonal influenza virus epidemics, emerging avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a public health risk, especially with the recent sharp increase in H7N9 infections. Evaluations of cross-reactive T-cell immunity to seasonal influenza viruses and human-infecting AIVs have been reported previously. However, the roles of influenza A virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic protections are not well understood; understanding those roles is important for preventing and controlling new emerging AIVs. Here, among the members of a healthy population presumed to have previously been infected by pandemic H1N1 (pH1N1), we found that pH1N1-specific T cells showed cross- but biased reactivity to human-infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protections. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic clustering expanded the relevant conclusions to a broader range of virus strains. We defined the potential key conserved epitopes required for cross-protection and revealed the molecular basis for the immunogenic variations. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.IMPORTANCE We revealed preexisting but biased T-cell reactivity of pH1N1 influenza virus to human-infecting AIVs, which provided distinct protections. The cross-reactive T-cell recognition had a regular pattern that depended on the T-cell epitope matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.


Efficacy and safety of blood purification in the treatment of deep burns: A systematic review and meta-analysis.

  • Gaofei Zhang‎ et al.
  • Medicine‎
  • 2021‎

This meta-analysis aimed to systematically review and evaluate randomized controlled trials (RCTs) and cohort studies examining the efficacy and safety of blood purification in the treatment of patients with deep burns.


Down-Regulating the Expression of miRNA-21 Inhibits the Glucose Metabolism of A549/DDP Cells and Promotes Cell Death Through the PI3K/AKT/mTOR/HIF-1α Pathway.

  • Ye Sun‎ et al.
  • Frontiers in oncology‎
  • 2021‎

miRNA-21 is a single-stranded non-coding RNA that is highly expressed in a variety of tumor cells. It participates in tumor cell proliferation, metabolism, metastasis, and drug resistance. Here, we tested the potential mechanism of miRNA-21 in cisplatin-resistant non-small cell lung cancer A549/DDP (human lung adenocarcinoma drug-resistant cell line) cells. A549 and A549/DDP RNAs were sequenced to show that miRNA-21 was highly expressed in the latter, and this was verified by qRT-PCR. In addition, we found that miRNA-21 combined with cisplatin can significantly inhibit glycolysis and glycolysis rate-limiting enzyme protein expression in A549/DDP cells. We also found that miRNA-21 combined with cisplatin can promote A549/DDP cell death. Further investigations showed that miRNA-21 combined with cisplatin caused excessive inactivation of the pI3K/AKT/mTOR/HIF-1α signaling pathway in cisplatin-resistant A549/DDP cells. Hence, reduction of the expression of miRNA-21 in combination with cisplatin chemotherapy may effectively improve the therapeutic effect on patients with non-small cell lung cancer, and this may provide a theoretical basis for the treatment of this disease.


Persistence of the SARS-CoV-2 Antibody Response in Asymptomatic Patients in Correctional Facilities.

  • Xiaodong Tian‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

SARS-CoV-2 has caused a global health disaster with millions of death worldwide, and the substantial proportion of asymptomatic carriers poses a huge threat to public health. The long-term antibody responses and neutralization activity during natural asymptomatic SARS-CoV-2 infection are unknown. In this study, we used enzyme-linked immunosorbent assays (ELISA) and neutralization assay with purified SARS-CoV-2S and N proteins to study the antibody responses of 156 individuals with natural asymptomatic infection. We found robust antibody responses to SARS-CoV-2 in 156 patients from 6 to 12 months. Although the antibody responses gradually decreased, S-IgG was more stable than N-IgG. S-IgG was still detected in 79% of naturally infected individuals after 12 months of infection. Moderate to potent neutralization activities were also observed in 98.74% of patients 6 months after infection. However, this proportion decreased at 8-month (46.15%) and 10-month (39.11%) after infection, respectively. Only 23.72% of patients displayed potent neutralization activity at 12 months. This study strongly supports the long-term presence of antibodies against SARS-CoV-2 in individuals with natural asymptomatic infection, although the magnitude of the antibody responses started to cripple 6 months after infection.


High Expression of VAV Gene Family Predicts Poor Prognosis of Acute Myeloid Leukemia.

  • Dan Mu‎ et al.
  • Technology in cancer research & treatment‎
  • 2021‎

Objectives: VAV family genes (VAV1, VAV2, and VAV3) are associated with prognosis in various cancers; however, they have not been evaluated in acute myeloid leukemia (AML). In this study, the prognostic value of VAV expression in AML was evaluated by a single-center study in combination with bioinformatics analyses. Methods: The expression and prognostic value of VAVs in patients with AML were investigated using various databases, including GEPIA, CCLE, EMBL-EBI, UALCAN, cBioPortal, STRING, and DAVID. Blood samples from 35 patients with AML (non-M3 subtype) and 13 benigh individuals were collected at our center. VAV expression levels were detected by real-time quantitative PCR (RT-qPCR) and western blotting. Clinical data were derived from medical records. Results: Based on data from multiple databases, the expression levels of VAV1, VAV2, and VAV3 were significantly higher in AML than in control tissues (P < 0.05). RT-qPCR and western blotting results showed that VAV expression in mRNA and protein levels were higher in patients with AML that in the control group (P < 0.05). Complete remission rates were lower and risks were higher in patients with AML with high VAV1 expression than with low VAV1 expression (P < 0.05). High levels of VAV2, VAV3, and VAV1 were related to a poor overall survival, and this relationship was significant for VAV1 (P < 0.05). High expression levels of genes correlated with VAV1, such as SIPA1, SH2D3C, and HMHA1 were also related to a poor prognosis in AML. Functional and pathways enrichment analyses indicated that the contribution of the VAV family to AML may be mediated by the NF-κB, cAMP, and other pathways. Conclusion: VAVs were highly expressed in AML. In particular, VAV1 has prognostic value and is a promising therapeutic target for AML.


Prevalence of Barmah Forest Virus, Chikungunya Virus and Ross River Virus Antibodies among Papua New Guinea Military Personnel before 2019.

  • Joanne G Kizu‎ et al.
  • Viruses‎
  • 2023‎

Barmah Forest virus (BFV), Chikungunya virus (CHIKV) and Ross River virus (RRV) belong to the Alphavirus genus of the family Togaviridae. All three virus infections have been reported in Papua New Guinea (PNG) previously, but the exact prevalence and distribution of these three alphaviruses in PNG has not been established. Sera collected from 204 PNG Military Personnel (PNGMP) study participants in April 2019 was tested for the presence of anti-BFV, anti-CHIKV and anti-RRV immunoglobulin G (IgG) antibodies using commercially available enzyme-linked immunosorbent assay (ELISA) IgG detection kits, as well as for specific neutralizing antibodies (NAb) against individual viruses. Overall, sero-positivity of the sera was anti-BFV IgG 12.3% (25/204), anti-BFV NAb 8.3% (17/204); anti-CHIKV IgG 47.1% (96/204), anti-CHIKV NAb 34.8% (71/204); and anti-RRV IgG 93.1% (190/204), anti-RRV NAb 56.4% (115/204), respectively. Of the 137/204 participants that were Nab-positive for at least one virus, we identified 4 BFV, 40 CHIKV and 73 RRV single infections, and 9 RRV+CHIKV and 11 BFV+RRV double infections. The lower proportion of NAb sero-positive compared to the ELISA IgG sero-positive assay samples suggests that the currently available commercial ELISA detection kits for these three alphaviruses may not be suitable for diagnostic/surveillance purposes in endemic areas such as PNG, due to serological cross-reactivity among these three alphaviruses. Laboratory testing using known positive control sera indicated no cross-neutralization between BFV and RRV; however, some RRV or BFV single infection human sera demonstrated low-level cross-neutralization against CHIKV (the ratio of RRV/CHIKV NAb titers or BFV/CHIKV ≥ 4). Our preliminary results indicate that the majority of PNGMP have previously been exposed to RRV, with mild exposure to CHIKV and low-level exposure to BFV, suggesting that multiple alphaviruses have been circulating among PNGMP. The transmission landscapes of these three alphaviruses across PNG should be prioritized for further investigation, including identification of specific vectors and hosts that mediate human spillover in order to mitigate future outbreaks. Ongoing education regarding precautionary and protective measures are needed to better protect individuals who travel to PNG.


M6A Promotes Colorectal Cancer Progression via Regulating the miR-27a-3p/BTG2 Pathway.

  • Wenjun Liu‎ et al.
  • Journal of oncology‎
  • 2023‎

Long noncoding (lnc) RNAs regulate cancer progression. However, the importance of lncRNAs and how they are regulated in colorectal cancer (CRC) are unclear. We aim to evaluate the function of lncRNA ADAMTS9-AS2 in CRC and its fundamental mechanism. Levels of ADAMTS9-AS2, miR-27a-3p, and B-cell translocation gene 2 (BTG2) were measured by qPCR. Cell viability was analyzed by CCK-8 and colony formation. Migration and invasion were tested by transwell assay. The interactions among ADAMTS9-AS2, miR-27a-3p, BTG2, and YTHDF2 were analyzed by luciferase test, immunoblotting, RNA pull-down, or RNA immunoprecipitation (RIP). An animal model was adopted to assess ADAMTS9-AS2's function. Overexpressing ADAMTS9-AS2 inhibited cell migration, invasion, colony formation capacity, and proliferation in vitro. The direct targeting of miR-27a-3p by ADAMTS9-AS2 abrogated the latter's effect in CRC cells. BTG2 was identified a target of miR-27a-3p, and silencing BTG2 weakened miR-27a-3p's effect. Knocking down ADAMTS9-AS2 abolished sh-YTHDF2's inhibitory effect on cell proliferation and invasion. Finally, overexpressing ADAMTS9-AS2 restrained xenograft growth. M6A reader YTHDF2-mediated degradation of ADAMTS9-AS2 promotes colon carcinogenesis via miR-27a-3p/BTG2 axis.


Cepharanthine Suppresses Herpes Simplex Virus Type 1 Replication Through the Downregulation of the PI3K/Akt and p38 MAPK Signaling Pathways.

  • Yao Liu‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Cepharanthine (CEP) is a naturally occurring isoquinoline alkaloid extracted from Stephania cepharantha Hayata. Although its underlying molecular mechanism is not fully understood, this compound is reported as a promising antiviral drug. In the present study, we explore the anti-HSV-1 effects and the underlying molecular mechanisms of CEP in vitro. Our results show that CEP could significantly inhibit the formation of plaque and the expression of viral proteins and exhibit a general suppression of replication-associated genes. Whereas HSV-1 infection increases the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38 MAPK) in host cells, CEP was effective indirectly inhibiting phosphorylation levels of the targets in PI3K/Akt and p38 MAPK signaling pathways. Moreover, CEP markedly decreased G0/G1 phase and increased G2/M phase cells and decreased the expression of cyclin-dependent kinase1 (CDK1) and cyclinB1 in a dose-dependent manner. Additionally, CEP increased apoptosis in infected cells, reduced B cell lymphoma-2 (Bcl-2) protein levels, and increased the protein levels of Bcl-associated X protein (Bax), cleaved-caspase3, and nuclear IκB kinaseα (IκBα). Collectively, CEP could arrest the cell cycle in the G2/M phase and induce apoptosis in infected cells by inhibiting the PI3K/Akt and p38 MAPK signaling pathways, hence further reducing HSV-1 infection and subsequent reproduction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: