Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Buprenorphine reduces methamphetamine intake and drug seeking behavior via activating nociceptin/orphanin FQ peptide receptor in rats.

  • Fangmin Wang‎ et al.
  • Frontiers in psychiatry‎
  • 2022‎

Buprenorphine, which has been approved for the treatment of opioid dependence, reduces cocaine consumption by co-activating μ-opioid receptors and nociceptin/orphanin FQ peptide (NOP) receptors. However, the role of buprenorphine in methamphetamine (METH) reinforcement and drug-seeking behavior remains unclear. This study investigated the effects of buprenorphine on METH self-administration and reinstatement of METH-seeking behavior in rats. We found that buprenorphine pretreatment had an inhibitory effect on METH self-administration behavior, and that buprenorphine at a dose of 0.3 mg/kg could inhibit motivation to respond for METH. Pretreatment with the NOP receptor antagonist thienorphine (0.5 mg/kg) or SB-612111 (1 mg/kg) could reverse the inhibitory effect of buprenorphine (0.1 mg/kg) on the METH self-administration. Moreover, treatment with buprenorphine (0.1 mg/kg and 0.3 mg/kg) significantly reduced the drug-seeking behavior induced by context or by METH priming but failed to reduce the drug-seeking behavior induced by conditional cues. Additionally, the NOP receptor antagonist SB-612111 reversed the inhibitory action of buprenorphine on the drug-seeking behavior induced by METH priming. The results demonstrated that buprenorphine reduced either METH intake or the drug-seeking behavior by activating NOP receptors, providing empirical evidence for the clinical use of buprenorphine in the treatment of METH relapse and addiction.


A comparison of reinforcing effectiveness and drug-seeking reinstatement of 2-fluorodeschloroketamine and ketamine in self-administered rats.

  • Han Du‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

2-Fluorodeschloroketamine (2F-DCK), a structural analog of ketamine, has been reported to cause impaired consciousness, agitation, and hallucination in abuse cases. It has similar reinforcing and discriminative effects as ketamine. However, the reinforcing efficacy and drug-seeking reinstatement of this analog have not been clarified to date. In this study, the effectiveness of 2F-DCK and ketamine was compared using a behavioral economics demand curve. The reinstatement of 2F-DCK- and ketamine-seeking behaviors induced by either conditioned cues or self-priming was also analyzed. Rats were intravenously self-administered 2F-DCK and ketamine at a dose of 0.5 mg/kg/infusion under a reinforcing schedule of fixed ratio 1 (FR1) with 4 h of daily training for at least 10 consecutive days. The elasticity coefficient parameter α and the essential value of the demand curve in the two groups were similar. Both groups of rats showed significant drug-seeking behavior induced either by conditional cues or by 2F-DCK and ketamine priming. Moreover, the α parameter was inversely related to the degree of reinstatement induced by cues or drug priming in both groups. In total, the expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding protein (p-CREB) in the nucleus accumbens in both extinguished and reinstated rats were significantly lower than those in the control. The expression of total Akt, glycogen synthase kinase (GSK)-3β, mammalian target of rapamycin (mTOR), and extracellular signal-related kinase (ERK) also decreased, but p-Akt, p-GSK-3β, p-mTOR, and p-ERK levels increased in both extinguished and reinstated rats. This is the first study to demonstrate that 2F-DCK has similar reinforcing efficacy, effectiveness, and post-withdrawal cravings as ketamine after repeated use. These data suggest that the downregulation of CREB/BDNF and the upregulation of the Akt/mTOR/GSK-3β signaling pathway in the nucleus accumbens may be involved in ketamine or 2F-DCK relapse.


Electroacupuncture suppresses discrete cue-evoked heroin-seeking and fos protein expression in the nucleus accumbens core in rats.

  • Sheng Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. Here, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of electroacupuncture (EA) on heroin-seeking behavior in a reinstatement model of relapse. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4 h or 25 infusions for 14 consecutive days. Then the rats were abstinent from heroin for two weeks. 2 Hz EA stimulation was conducted once daily for 14 days during heroin abstinence. We tested these animals for contextual and discrete cue-induced reinstatement of active responses. We also applied immunohistochemistry to detect Fos-positive nuclei in the nucleus accumbens (NACc) core and shell after reinstatement test. We found that active responses elicited by both contextual cues and discrete cues were high in the rats trained with heroin than in saline controls. EA treatment significantly reduced active responses elicited by discrete cues. EA stimulation attenuated Fos expression in the core but not the shell of the NACc. Altogether, these results highlight the therapeutic benefit of EA in preventing relapse to drug addiction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: